it-swarm.com.de

pandas Neue Spalte basierend auf Werten aus anderen Spalten erstellen

Ich habe andere Methoden als bei anderen Fragen ausprobiert, kann aber immer noch nicht die richtige Antwort für mein Problem finden. Das Entscheidende dabei ist, dass eine Person, die als spanisch eingestuft wird, nicht als etwas anderes eingestuft werden kann. Selbst wenn sie eine "1" in einer anderen Ethniespalte haben, werden sie immer noch als Hispanic gezählt, nicht zwei oder mehr Rassen. Wenn die Summe aller ERI-Spalten größer als 1 ist, werden sie als zwei oder mehr Rassen gezählt und können nicht als eindeutige ethnische Zugehörigkeit gezählt werden (mit Ausnahme der hispanischen Zugehörigkeit). Hoffentlich macht das Sinn. Jede Hilfe wird sehr geschätzt.

Fast wie eine for-Schleife durch jede Zeile, und wenn jeder Datensatz ein Kriterium erfüllt, werden sie zu einer Liste hinzugefügt und aus dem Original entfernt.

Aus dem folgenden Datenrahmen muss ich eine neue Spalte berechnen, die auf den folgenden Elementen basiert:

======================== KRITERIEN ======================= =======

IF [ERI_Hispanic] = 1 THEN RETURN “Hispanic”
ELSE IF SUM([ERI_AmerInd_AKNatv] + [ERI_Asian] + [ERI_Black_Afr.Amer] + [ERI_HI_PacIsl] + [ERI_White]) > 1 THEN RETURN “Two or More”
ELSE IF [ERI_AmerInd_AKNatv] = 1 THEN RETURN “A/I AK Native”
ELSE IF [ERI_Asian] = 1 THEN RETURN “Asian”
ELSE IF [ERI_Black_Afr.Amer] = 1 THEN RETURN “Black/AA”
ELSE IF [ERI_HI_PacIsl] = 1 THEN RETURN “Haw/Pac Isl.”
ELSE IF [ERI_White] = 1 THEN RETURN “White”

Kommentar: Wenn das ERI-Flag für Hispanic True (1) ist, wird der Mitarbeiter als „Hispanic“ klassifiziert.

Kommentar: Wenn mehr als ein nicht-hispanisches ERI-Flag wahr ist, geben Sie "Zwei oder mehr" zurück.

===================== DATAFRAME ===========================

     lname          fname       rno_cd  eri_afr_amer    eri_asian   eri_hawaiian    eri_hispanic    eri_nat_amer    eri_white   rno_defined
0    MOST           JEFF        E       0               0           0               0               0               1           White
1    CRUISE         TOM         E       0               0           0               1               0               0           White
2    DEPP           JOHNNY              0               0           0               0               0               1           Unknown
3    DICAP          LEO                 0               0           0               0               0               1           Unknown
4    BRANDO         MARLON      E       0               0           0               0               0               0           White
5    HANKS          TOM         0                       0           0               0               0               1           Unknown
6    DENIRO         ROBERT      E       0               1           0               0               0               1           White
7    PACINO         AL          E       0               0           0               0               0               1           White
8    WILLIAMS       ROBIN       E       0               0           1               0               0               0           White
9    EASTWOOD       CLINT       E       0               0           0               0               0               1           White
222
Dave

OK, zwei Schritte dazu - zuerst muss eine Funktion geschrieben werden, die die gewünschte Übersetzung ausführt - Ich habe ein Beispiel zusammengestellt, das auf Ihrem Pseudocode basiert:

def label_race (row):
   if row['eri_hispanic'] == 1 :
      return 'Hispanic'
   if row['eri_afr_amer'] + row['eri_asian'] + row['eri_hawaiian'] + row['eri_nat_amer'] + row['eri_white'] > 1 :
      return 'Two Or More'
   if row['eri_nat_amer'] == 1 :
      return 'A/I AK Native'
   if row['eri_asian'] == 1:
      return 'Asian'
   if row['eri_afr_amer']  == 1:
      return 'Black/AA'
   if row['eri_hawaiian'] == 1:
      return 'Haw/Pac Isl.'
   if row['eri_white'] == 1:
      return 'White'
   return 'Other'

Vielleicht möchten Sie das noch einmal durchgehen, aber es scheint den Trick zu tun - beachten Sie, dass der Parameter, der in die Funktion einfließt, als Reihenobjekt mit der Bezeichnung "row" betrachtet wird.

Verwenden Sie als Nächstes die Apply-Funktion in pandas, um die Funktion anzuwenden - z.

df.apply (lambda row: label_race(row), axis=1)

Beachten Sie, dass die Angabe axis = 1 bedeutet, dass die Anwendung auf Zeilen- und nicht auf Spaltenebene ausgeführt wird. Die Ergebnisse sind hier:

0           White
1        Hispanic
2           White
3           White
4           Other
5           White
6     Two Or More
7           White
8    Haw/Pac Isl.
9           White

Wenn Sie mit diesen Ergebnissen zufrieden sind, führen Sie sie erneut aus und speichern Sie die Ergebnisse in einer neuen Spalte in Ihrem ursprünglichen Datenrahmen.

df['race_label'] = df.apply (lambda row: label_race(row), axis=1)

Der resultierende Datenrahmen sieht folgendermaßen aus (scrollen Sie nach rechts, um die neue Spalte anzuzeigen):

      lname   fname rno_cd  eri_afr_amer  eri_asian  eri_hawaiian   eri_hispanic  eri_nat_amer  eri_white rno_defined    race_label
0      MOST    JEFF      E             0          0             0              0             0          1       White         White
1    CRUISE     TOM      E             0          0             0              1             0          0       White      Hispanic
2      DEPP  JOHNNY    NaN             0          0             0              0             0          1     Unknown         White
3     DICAP     LEO    NaN             0          0             0              0             0          1     Unknown         White
4    BRANDO  MARLON      E             0          0             0              0             0          0       White         Other
5     HANKS     TOM    NaN             0          0             0              0             0          1     Unknown         White
6    DENIRO  ROBERT      E             0          1             0              0             0          1       White   Two Or More
7    PACINO      AL      E             0          0             0              0             0          1       White         White
8  WILLIAMS   ROBIN      E             0          0             1              0             0          0       White  Haw/Pac Isl.
9  EASTWOOD   CLINT      E             0          0             0              0             0          1       White         White
288
Thomas Kimber

Da dies das erste Google-Ergebnis für "Pandas neue Spalte von anderen" ist, ist hier ein einfaches Beispiel:

import pandas as pd

# make a simple dataframe
df = pd.DataFrame({'a':[1,2], 'b':[3,4]})
df
#    a  b
# 0  1  3
# 1  2  4

# create an unattached column with an index
df.apply(lambda row: row.a + row.b, axis=1)
# 0    4
# 1    6

# do same but attach it to the dataframe
df['c'] = df.apply(lambda row: row.a + row.b, axis=1)
df
#    a  b  c
# 0  1  3  4
# 1  2  4  6

Wenn Sie die SettingWithCopyWarning erhalten, können Sie dies auch folgendermaßen tun:

fn = lambda row: row.a + row.b # define a function for the new column
col = df.apply(fn, axis=1) # get column data with an index
df = df.assign(c=col.values) # assign values to column 'c'

Quelle: https://stackoverflow.com/a/12555510/243392

Und wenn Ihr Spaltenname Leerzeichen enthält, können Sie die folgende Syntax verwenden:

df = df.assign(**{'some column name': col.values})

Und hier ist die Dokumentation für apply und assign .

145
Brian Burns

Die obigen Antworten sind vollkommen gültig, aber es gibt eine vektorisierte Lösung in Form von numpy.select. Auf diese Weise können Sie Bedingungen definieren und anschließend Ausgaben für diese Bedingungen definieren. Dies ist wesentlich effizienter als die Verwendung von apply:


Definieren Sie zunächst die Bedingungen:

conditions = [
    df['eri_hispanic'] == 1,
    df[['eri_afr_amer', 'eri_asian', 'eri_hawaiian', 'eri_nat_amer', 'eri_white']].sum(1).gt(1),
    df['eri_nat_amer'] == 1,
    df['eri_asian'] == 1,
    df['eri_afr_amer'] == 1,
    df['eri_hawaiian'] == 1,
    df['eri_white'] == 1,
]

Definieren Sie nun die entsprechenden Ausgänge:

outputs = [
    'Hispanic', 'Two Or More', 'A/I AK Native', 'Asian', 'Black/AA', 'Haw/Pac Isl.', 'White'
]

Schließlich mit numpy.select:

res = np.select(conditions, outputs, 'Other')
pd.Series(res)
0           White
1        Hispanic
2           White
3           White
4           Other
5           White
6     Two Or More
7           White
8    Haw/Pac Isl.
9           White
dtype: object

Warum sollte numpy.select anstelle von apply verwendet werden? Hier sind einige Leistungsüberprüfungen:

df = pd.concat([df]*1000)

In [42]: %timeit df.apply(lambda row: label_race(row), axis=1)
1.07 s ± 4.16 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [44]: %%timeit
    ...: conditions = [
    ...:     df['eri_hispanic'] == 1,
    ...:     df[['eri_afr_amer', 'eri_asian', 'eri_hawaiian', 'eri_nat_amer', 'eri_white']].sum(1).gt(1),
    ...:     df['eri_nat_amer'] == 1,
    ...:     df['eri_asian'] == 1,
    ...:     df['eri_afr_amer'] == 1,
    ...:     df['eri_hawaiian'] == 1,
    ...:     df['eri_white'] == 1,
    ...: ]
    ...:
    ...: outputs = [
    ...:     'Hispanic', 'Two Or More', 'A/I AK Native', 'Asian', 'Black/AA', 'Haw/Pac Isl.', 'White'
    ...: ]
    ...:
    ...: np.select(conditions, outputs, 'Other')
    ...:
    ...:
3.09 ms ± 17 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Die Verwendung von numpy.select führt zu erheblich verbesserter Leistung, und die Diskrepanz nimmt nur zu, wenn die Daten größer werden.

27
user3483203

.apply() übernimmt eine Funktion als ersten Parameter; Übergeben Sie die Funktion label_race wie folgt:

df['race_label'] = df.apply(label_race, axis=1)

Sie müssen keine Lambda-Funktion erstellen, um eine Funktion zu übergeben.

versuche dies,

df.loc[df['eri_white']==1,'race_label'] = 'White'
df.loc[df['eri_hawaiian']==1,'race_label'] = 'Haw/Pac Isl.'
df.loc[df['eri_afr_amer']==1,'race_label'] = 'Black/AA'
df.loc[df['eri_asian']==1,'race_label'] = 'Asian'
df.loc[df['eri_nat_amer']==1,'race_label'] = 'A/I AK Native'
df.loc[(df['eri_afr_amer'] + df['eri_asian'] + df['eri_hawaiian'] + df['eri_nat_amer'] + df['eri_white']) > 1,'race_label'] = 'Two Or More'
df.loc[df['eri_hispanic']==1,'race_label'] = 'Hispanic'
df['race_label'].fillna('Other', inplace=True)

O/P:

     lname   fname rno_cd  eri_afr_amer  eri_asian  eri_hawaiian  \
0      MOST    JEFF      E             0          0             0   
1    CRUISE     TOM      E             0          0             0   
2      DEPP  JOHNNY    NaN             0          0             0   
3     DICAP     LEO    NaN             0          0             0   
4    BRANDO  MARLON      E             0          0             0   
5     HANKS     TOM    NaN             0          0             0   
6    DENIRO  ROBERT      E             0          1             0   
7    PACINO      AL      E             0          0             0   
8  WILLIAMS   ROBIN      E             0          0             1   
9  EASTWOOD   CLINT      E             0          0             0   

   eri_hispanic  eri_nat_amer  eri_white rno_defined    race_label  
0             0             0          1       White         White  
1             1             0          0       White      Hispanic  
2             0             0          1     Unknown         White  
3             0             0          1     Unknown         White  
4             0             0          0       White         Other  
5             0             0          1     Unknown         White  
6             0             0          1       White   Two Or More  
7             0             0          1       White         White  
8             0             0          0       White  Haw/Pac Isl.  
9             0             0          1       White         White 

verwenden Sie .loc anstelle von apply.

es verbessert die Vektorisierung.

.loc funktioniert auf einfache Weise, maskiert Zeilen basierend auf der Bedingung und wendet Werte auf die Einfrierzeilen an.

weitere Informationen finden Sie unter . loc docs

Leistungsmetriken:

Akzeptierte Antwort:

def label_race (row):
   if row['eri_hispanic'] == 1 :
      return 'Hispanic'
   if row['eri_afr_amer'] + row['eri_asian'] + row['eri_hawaiian'] + row['eri_nat_amer'] + row['eri_white'] > 1 :
      return 'Two Or More'
   if row['eri_nat_amer'] == 1 :
      return 'A/I AK Native'
   if row['eri_asian'] == 1:
      return 'Asian'
   if row['eri_afr_amer']  == 1:
      return 'Black/AA'
   if row['eri_hawaiian'] == 1:
      return 'Haw/Pac Isl.'
   if row['eri_white'] == 1:
      return 'White'
   return 'Other'

df=pd.read_csv('dataser.csv')
df = pd.concat([df]*1000)

%timeit df.apply(lambda row: label_race(row), axis=1)

1,15 s ± 46,5 ms pro Schleife (Mittelwert ± Standardabweichung von 7 Durchläufen, je 1 Schleife)

Meine vorgeschlagene Antwort:

def label_race(df):
    df.loc[df['eri_white']==1,'race_label'] = 'White'
    df.loc[df['eri_hawaiian']==1,'race_label'] = 'Haw/Pac Isl.'
    df.loc[df['eri_afr_amer']==1,'race_label'] = 'Black/AA'
    df.loc[df['eri_asian']==1,'race_label'] = 'Asian'
    df.loc[df['eri_nat_amer']==1,'race_label'] = 'A/I AK Native'
    df.loc[(df['eri_afr_amer'] + df['eri_asian'] + df['eri_hawaiian'] + df['eri_nat_amer'] + df['eri_white']) > 1,'race_label'] = 'Two Or More'
    df.loc[df['eri_hispanic']==1,'race_label'] = 'Hispanic'
    df['race_label'].fillna('Other', inplace=True)
df=pd.read_csv('s22.csv')
df = pd.concat([df]*1000)

%timeit label_race(df)

24,7 ms ± 1,7 ms pro Schleife (Mittelwert ± Standardabweichung von 7 Durchläufen, jeweils 10 Schleifen)

0