it-swarm.com.de

"Wem gehört das Zebra" programmgesteuert?

Edit: Dieses Puzzle wird auch als "Einsteins Rätsel" bezeichnet.

Das Wem das Zebra gehört (Sie können versuchen Sie es hier mit der Online-Version ) ist ein Beispiel für ein klassisches Puzzlespiel und ich wette, dass die meisten Leute von Stack Overflow es mit Stift und lösen können Papier. Aber wie würde eine programmatische Lösung aussehen?

Basierend auf den unten aufgeführten Hinweisen ...

  • Es gibt fünf Häuser.
  • Jedes Haus hat eine eigene Farbe.
  • Alle Hausbesitzer haben unterschiedliche Nationalitäten.
  • Sie haben alle unterschiedliche Haustiere.
  • Sie trinken alle verschiedene Getränke.
  • Sie rauchen alle verschiedene Zigaretten.
  • Der Engländer wohnt im roten Haus.
  • Der Schwede hat einen Hund.
  • Der Däne trinkt Tee.
  • Das grüne Haus befindet sich auf der linken Seite des weißen Hauses.
  • Sie trinken Kaffee im grünen Haus.
  • Der Mann, der Pall Mall raucht, hat Vögel.
  • Im gelben Haus rauchen sie Dunhill.
  • Im Mittelhaus trinken sie Milch.
  • Der Norweger wohnt im ersten Haus.
  • Der Mann, der Blend raucht, wohnt im Haus neben dem Haus mit Katzen.
  • In dem Haus neben dem Haus, wo sie ein Pferd haben, rauchen sie Dunhill.
  • Der Mann, der Blue Master raucht, trinkt Bier.
  • Der Deutsche raucht Prinz.
  • Der Norweger wohnt neben dem blauen Haus.
  • Sie trinken Wasser im Haus neben dem Haus, in dem sie Blend rauchen. 

... wem gehört das Zebra?

123
activout.se

Hier ist eine Lösung in Python, die auf der Constraint-Programmierung basiert:

from constraint import AllDifferentConstraint, InSetConstraint, Problem

# variables
colors        = "blue red green white yellow".split()
nationalities = "Norwegian German Dane Swede English".split()
pets          = "birds dog cats horse zebra".split()
drinks        = "tea coffee milk beer water".split()
cigarettes    = "Blend, Prince, Blue Master, Dunhill, Pall Mall".split(", ")

# There are five houses.
minn, maxn = 1, 5
problem = Problem()
# value of a variable is the number of a house with corresponding property
variables = colors + nationalities + pets + drinks + cigarettes
problem.addVariables(variables, range(minn, maxn+1))

# Each house has its own unique color.
# All house owners are of different nationalities.
# They all have different pets.
# They all drink different drinks.
# They all smoke different cigarettes.
for vars_ in (colors, nationalities, pets, drinks, cigarettes):
    problem.addConstraint(AllDifferentConstraint(), vars_)

# In the middle house they drink milk.
#NOTE: interpret "middle" in a numerical sense (not geometrical)
problem.addConstraint(InSetConstraint([(minn + maxn) // 2]), ["milk"])
# The Norwegian lives in the first house.
#NOTE: interpret "the first" as a house number
problem.addConstraint(InSetConstraint([minn]), ["Norwegian"])
# The green house is on the left side of the white house.
#XXX: what is "the left side"? (linear, circular, two sides, 2D house arrangment)
#NOTE: interpret it as 'green house number' + 1 == 'white house number'
problem.addConstraint(lambda a,b: a+1 == b, ["green", "white"])

def add_constraints(constraint, statements, variables=variables, problem=problem):
    for stmt in (line for line in statements if line.strip()):
        problem.addConstraint(constraint, [v for v in variables if v in stmt])

and_statements = """
They drink coffee in the green house.
The man who smokes Pall Mall has birds.
The English man lives in the red house.
The Dane drinks tea.
In the yellow house they smoke Dunhill.
The man who smokes Blue Master drinks beer.
The German smokes Prince.
The Swede has a dog.
""".split("\n")
add_constraints(lambda a,b: a == b, and_statements)

nextto_statements = """
The man who smokes Blend lives in the house next to the house with cats.
In the house next to the house where they have a horse, they smoke Dunhill.
The Norwegian lives next to the blue house.
They drink water in the house next to the house where they smoke Blend.
""".split("\n")
#XXX: what is "next to"? (linear, circular, two sides, 2D house arrangment)
add_constraints(lambda a,b: abs(a - b) == 1, nextto_statements)

def solve(variables=variables, problem=problem):
    from itertools  import groupby
    from operator   import itemgetter

    # find & print solutions
    for solution in problem.getSolutionIter():
        for key, group in groupby(sorted(solution.iteritems(), key=itemgetter(1)), key=itemgetter(1)):
            print key, 
            for v in sorted(dict(group).keys(), key=variables.index):
                print v.ljust(9),
            print

if __== '__main__':
    solve()

Ausgabe:

1 yellow    Norwegian cats      water     Dunhill  
2 blue      Dane      horse     tea       Blend    
3 red       English   birds     milk      Pall Mall
4 green     German    zebra     coffee    Prince   
5 white     Swede     dog       beer      Blue Master

Es dauert 0,6 Sekunden (CPU 1,5 GHz), um die Lösung zu finden.
Die Antwort lautet: "Deutsch besitzt Zebra."


So installieren Sie das Modul constraint über pip: pip install python-constraint

Manuell installieren:

160
jfs

In Prolog können Sie die Domäne instanziieren, indem Sie einfach die Elemente from it :) auswählen (indem Sie ausschließende Entscheidungen treffen , um die Effizienz zu erhöhen). Mit SWI-Prolog

select([A|As],S):- select(A,S,S1),select(As,S1).
select([],_). 

left_of(A,B,C):- append(_,[A,B|_],C).  
next_to(A,B,C):- left_of(A,B,C) ; left_of(B,A,C).

zebra(Owns, HS):-     % house: color,nation,pet,drink,smokes
  HS   = [ h(_,norwegian,_,_,_),    h(blue,_,_,_,_),   h(_,_,_,milk,_), _, _], 
  select([ h(red,brit,_,_,_),       h(_,swede,dog,_,_), 
           h(_,dane,_,tea,_),       h(_,german,_,_,prince)], HS),
  select([ h(_,_,birds,_,pallmall), h(yellow,_,_,_,dunhill),
           h(_,_,_,beer,bluemaster)],                        HS), 
  left_of( h(green,_,_,coffee,_),   h(white,_,_,_,_),        HS),
  next_to( h(_,_,_,_,dunhill),      h(_,_,horse,_,_),        HS),
  next_to( h(_,_,_,_,blend),        h(_,_,cats, _,_),        HS),
  next_to( h(_,_,_,_,blend),        h(_,_,_,water,_),        HS),
  member(  h(_,Owns,zebra,_,_),                              HS).

Läuft ganz sofort:

?- time( (zebra(Who,HS), writeln(Who), nl, maplist(writeln,HS), nl, false 
          ; writeln('no more solutions!') )).
german

h( yellow, norwegian, cats,   water,  dunhill   )
h( blue,   dane,      horse,  tea,    blend     )
h( red,    brit,      birds,  milk,   pallmall  )
h( green,  german,    zebra,  coffee, prince    )     % formatted by hand
h( white,  swede,     dog,    beer,   bluemaster)

no more solutions!
% 1,706 inferences, 0.000 CPU in 0.070 seconds (0% CPU, Infinite Lips)
true.
44
Will Ness

In einem Plakat wurde bereits erwähnt, dass Prolog eine mögliche Lösung ist. Das ist wahr und es ist die Lösung, die ich verwenden würde. Im Allgemeinen ist dies ein perfektes Problem für ein automatisiertes Inferenzsystem. Prolog ist eine logische Programmiersprache (und ein zugehöriger Interpreter), die ein solches System bilden. Es erlaubt grundsätzlich den Abschluss von Fakten aus Aussagen, die mit First Order Logic gemacht wurden. FOL ist im Grunde eine fortgeschrittenere Form der Aussagenlogik. Wenn Sie sich entscheiden, Prolog nicht zu verwenden, können Sie ein ähnliches System Ihrer eigenen Kreation verwenden, indem Sie eine Methode wie modus ponens verwenden, um die Schlussfolgerungen zu ziehen.

Sie müssen natürlich ein paar Regeln über Zebras hinzufügen, da dies nirgends erwähnt wird ... Ich glaube, die Absicht ist, dass Sie die anderen 4 Haustiere herausfinden können und davon ableiten, dass das letzte Zebra ist? Sie möchten Regeln hinzufügen, die besagen, dass ein Zebra eines der Haustiere ist, und jedes Haus kann nur ein Haustier haben. Diese Art des "gesunden Menschenverstandes" in ein Inferenzsystem zu bringen, ist die größte Hürde, die Technik als echte KI einzusetzen. Es gibt einige Forschungsprojekte wie Cyc, die versuchen, ein solches allgemeines Wissen durch rohe Gewalt zu vermitteln. Sie haben einen interessanten Erfolg erzielt.

15
rmeador

SWI-Prolog kompatibel:

% NOTE - This may or may not be more efficent. A bit verbose, though.
left_side(L, R, [L, R, _, _, _]).
left_side(L, R, [_, L, R, _, _]).
left_side(L, R, [_, _, L, R, _]).
left_side(L, R, [_, _, _, L, R]).

next_to(X, Y, Street) :- left_side(X, Y, Street).
next_to(X, Y, Street) :- left_side(Y, X, Street).

m(X, Y) :- member(X, Y).

get_zebra(Street, Who) :- 
    Street = [[C1, N1, P1, D1, S1],
              [C2, N2, P2, D2, S2],
              [C3, N3, P3, D3, S3],
              [C4, N4, P4, D4, S4],
              [C5, N5, P5, D5, S5]],
    m([red, english, _, _, _], Street),
    m([_, swede, dog, _, _], Street),
    m([_, dane, _, tea, _], Street),
    left_side([green, _, _, _, _], [white, _, _, _, _], Street),
    m([green, _, _, coffee, _], Street),
    m([_, _, birds, _, pallmall], Street),
    m([yellow, _, _, _, dunhill], Street),
    D3 = milk,
    N1 = norwegian,
    next_to([_, _, _, _, blend], [_, _, cats, _, _], Street),
    next_to([_, _, horse, _, _], [_, _, _, _, dunhill], Street),
    m([_, _, _, beer, bluemaster], Street),
    m([_, german, _, _, prince], Street),
    next_to([_, norwegian, _, _, _], [blue, _, _, _, _], Street),
    next_to([_, _, _, water, _], [_, _, _, _, blend], Street),
    m([_, Who, zebra, _, _], Street).

Beim Dolmetscher:

?- get_zebra(Street, Who).
Street = ...
Who = german
14
new123456

So würde ich es machen. Zuerst würde ich alle bestellten n-Tupel generieren

(housenumber, color, nationality, pet, drink, smoke)

5 ^ 6 davon, 15625, sind leicht zu handhaben. Dann würde ich die einfachen Booleschen Bedingungen herausfiltern. Es gibt zehn davon, von denen Sie erwarten würden, dass 8/25 der Bedingungen herausgefiltert werden (1/25 der Bedingungen enthalten einen Schweden mit einem Hund, 16/25 einen Nicht-Schweden mit einem Nicht-Hund). . Natürlich sind sie nicht unabhängig, aber nachdem sie herausgefiltert wurden, sollten nicht viele übrig sein.

Danach haben Sie ein Nice-Grafikproblem. Erstellen Sie ein Diagramm, wobei jeder Knoten einen der verbleibenden n-Tupel darstellt. Fügen Sie dem Graphen Kanten hinzu, wenn die beiden Enden Duplikate in einigen n-Tuple-Positionen enthalten, oder verstoßen Sie gegen "positionelle" Einschränkungen (fünf davon). Von dort aus sind Sie fast zu Hause. Durchsuchen Sie die Grafik nach einem unabhängigen Satz von fünf Knoten (wobei keiner der Knoten durch Kanten verbunden ist). Wenn es nicht zu viele gibt, können Sie möglicherweise alle 5-Tupel von n-Tupeln erschöpfend generieren und einfach wieder filtern.

Dies könnte ein guter Kandidat für Code-Golf sein. Jemand kann es wahrscheinlich in einer Zeile mit so etwas wie haskell lösen :)

aftererthought: Der anfängliche Filterdurchlauf kann auch Informationen aus den Positionseinschränkungen entfernen. Nicht viel (1/25), aber immer noch signifikant.

12
Chris

Eine weitere Python-Lösung, diesmal unter Verwendung von Pythons PyKE (Python Knowledge Engine). Zugegeben, es ist viel ausführlicher als die Verwendung von Pythons "Constraint" -Modul in der Lösung von @ J.F.Sebastian, aber es bietet einen interessanten Vergleich für jeden, der eine reine Knowledge Engine für diese Art von Problem sucht.

clues.kfb

categories( POSITION, 1, 2, 3, 4, 5 )                                   # There are five houses.
categories( HOUSE_COLOR, blue, red, green, white, yellow )              # Each house has its own unique color.
categories( NATIONALITY, Norwegian, German, Dane, Swede, English )      # All house owners are of different nationalities.
categories( PET, birds, dog, cats, horse, zebra )                       # They all have different pets.
categories( DRINK, tea, coffee, milk, beer, water )                     # They all drink different drinks.
categories( SMOKE, Blend, Prince, 'Blue Master', Dunhill, 'Pall Mall' ) # They all smoke different cigarettes.

related( NATIONALITY, English, HOUSE_COLOR, red )    # The English man lives in the red house.
related( NATIONALITY, Swede, PET, dog )              # The Swede has a dog.
related( NATIONALITY, Dane, DRINK, tea )             # The Dane drinks tea.
left_of( HOUSE_COLOR, green, HOUSE_COLOR, white )    # The green house is on the left side of the white house.
related( DRINK, coffee, HOUSE_COLOR, green )         # They drink coffee in the green house.
related( SMOKE, 'Pall Mall', PET, birds )            # The man who smokes Pall Mall has birds.
related( SMOKE, Dunhill, HOUSE_COLOR, yellow )       # In the yellow house they smoke Dunhill.
related( POSITION, 3, DRINK, milk )                  # In the middle house they drink milk.
related( NATIONALITY, Norwegian, POSITION, 1 )       # The Norwegian lives in the first house.
next_to( SMOKE, Blend, PET, cats )                   # The man who smokes Blend lives in the house next to the house with cats.
next_to( SMOKE, Dunhill, PET, horse )                # In the house next to the house where they have a horse, they smoke Dunhill.
related( SMOKE, 'Blue Master', DRINK, beer )         # The man who smokes Blue Master drinks beer.
related( NATIONALITY, German, SMOKE, Prince )        # The German smokes Prince.
next_to( NATIONALITY, Norwegian, HOUSE_COLOR, blue ) # The Norwegian lives next to the blue house.
next_to( DRINK, water, SMOKE, Blend )                # They drink water in the house next to the house where they smoke Blend.

relations.krb

#############
# Categories

# Foreach set of categories, assert each type
categories
    foreach
        clues.categories($category, $thing1, $thing2, $thing3, $thing4, $thing5)
    assert
        clues.is_category($category, $thing1)
        clues.is_category($category, $thing2)
        clues.is_category($category, $thing3)
        clues.is_category($category, $thing4)
        clues.is_category($category, $thing5)


#########################
# Inverse Relationships

# Foreach A=1, assert 1=A
inverse_relationship_positive
    foreach
        clues.related($category1, $thing1, $category2, $thing2)
    assert
        clues.related($category2, $thing2, $category1, $thing1)

# Foreach A!1, assert 1!A
inverse_relationship_negative
    foreach
        clues.not_related($category1, $thing1, $category2, $thing2)
    assert
        clues.not_related($category2, $thing2, $category1, $thing1)

# Foreach "A beside B", assert "B beside A"
inverse_relationship_beside
    foreach
        clues.next_to($category1, $thing1, $category2, $thing2)
    assert
        clues.next_to($category2, $thing2, $category1, $thing1)


###########################
# Transitive Relationships

# Foreach A=1 and 1=a, assert A=a
transitive_positive
    foreach
        clues.related($category1, $thing1, $category2, $thing2)
        clues.related($category2, $thing2, $category3, $thing3)

        check unique($thing1, $thing2, $thing3) \
          and unique($category1, $category2, $category3)
    assert
        clues.related($category1, $thing1, $category3, $thing3)

# Foreach A=1 and 1!a, assert A!a
transitive_negative
    foreach
        clues.related($category1, $thing1, $category2, $thing2)
        clues.not_related($category2, $thing2, $category3, $thing3)

        check unique($thing1, $thing2, $thing3) \
          and unique($category1, $category2, $category3)
    assert
        clues.not_related($category1, $thing1, $category3, $thing3)


##########################
# Exclusive Relationships

# Foreach A=1, assert A!2 and A!3 and A!4 and A!5
if_one_related_then_others_unrelated
    foreach
        clues.related($category, $thing, $category_other, $thing_other)
        check unique($category, $category_other)

        clues.is_category($category_other, $thing_not_other)
        check unique($thing, $thing_other, $thing_not_other)
    assert
        clues.not_related($category, $thing, $category_other, $thing_not_other)

# Foreach A!1 and A!2 and A!3 and A!4, assert A=5
if_four_unrelated_then_other_is_related
    foreach
        clues.not_related($category, $thing, $category_other, $thingA)
        clues.not_related($category, $thing, $category_other, $thingB)
        check unique($thingA, $thingB)

        clues.not_related($category, $thing, $category_other, $thingC)
        check unique($thingA, $thingB, $thingC)

        clues.not_related($category, $thing, $category_other, $thingD)
        check unique($thingA, $thingB, $thingC, $thingD)

        # Find the fifth variation of category_other.
        clues.is_category($category_other, $thingE)
        check unique($thingA, $thingB, $thingC, $thingD, $thingE)
    assert
        clues.related($category, $thing, $category_other, $thingE)


###################
# Neighbors: Basic

# Foreach "A left of 1", assert "A beside 1"
expanded_relationship_beside_left
    foreach
        clues.left_of($category1, $thing1, $category2, $thing2)
    assert
        clues.next_to($category1, $thing1, $category2, $thing2)

# Foreach "A beside 1", assert A!1
unrelated_to_beside
    foreach
        clues.next_to($category1, $thing1, $category2, $thing2)
        check unique($category1, $category2)
    assert
        clues.not_related($category1, $thing1, $category2, $thing2)


###################################
# Neighbors: Spatial Relationships

# Foreach "A beside B" and "A=(at-Edge)", assert "B=(near-Edge)"
check_next_to_either_Edge
    foreach
        clues.related(POSITION, $position_known, $category, $thing)
        check is_Edge($position_known)

        clues.next_to($category, $thing, $category_other, $thing_other)

        clues.is_category(POSITION, $position_other)
        check is_beside($position_known, $position_other)
    assert
        clues.related(POSITION, $position_other, $category_other, $thing_other)

# Foreach "A beside B" and "A!(near-Edge)" and "B!(near-Edge)", assert "A!(at-Edge)"
check_too_close_to_Edge
    foreach
        clues.next_to($category, $thing, $category_other, $thing_other)

        clues.is_category(POSITION, $position_Edge)
        clues.is_category(POSITION, $position_near_Edge)
        check is_Edge($position_Edge) and is_beside($position_Edge, $position_near_Edge)

        clues.not_related(POSITION, $position_near_Edge, $category, $thing)
        clues.not_related(POSITION, $position_near_Edge, $category_other, $thing_other)
    assert
        clues.not_related(POSITION, $position_Edge, $category, $thing)

# Foreach "A beside B" and "A!(one-side)", assert "A=(other-side)"
check_next_to_with_other_side_impossible
    foreach
        clues.next_to($category, $thing, $category_other, $thing_other)

        clues.related(POSITION, $position_known, $category_other, $thing_other)
        check not is_Edge($position_known)

        clues.not_related($category, $thing, POSITION, $position_one_side)
        check is_beside($position_known, $position_one_side)

        clues.is_category(POSITION, $position_other_side)
        check is_beside($position_known, $position_other_side) \
          and unique($position_known, $position_one_side, $position_other_side)
    assert
        clues.related($category, $thing, POSITION, $position_other_side)

# Foreach "A left of B"...
#   ... and "C=(position1)" and "D=(position2)" and "E=(position3)"
# ~> assert "A=(other-position)" and "B=(other-position)+1"
left_of_and_only_two_slots_remaining
    foreach
        clues.left_of($category_left, $thing_left, $category_right, $thing_right)

        clues.related($category_left, $thing_left_other1, POSITION, $position1)
        clues.related($category_left, $thing_left_other2, POSITION, $position2)
        clues.related($category_left, $thing_left_other3, POSITION, $position3)
        check unique($thing_left, $thing_left_other1, $thing_left_other2, $thing_left_other3)

        clues.related($category_right, $thing_right_other1, POSITION, $position1)
        clues.related($category_right, $thing_right_other2, POSITION, $position2)
        clues.related($category_right, $thing_right_other3, POSITION, $position3)
        check unique($thing_right, $thing_right_other1, $thing_right_other2, $thing_right_other3)

        clues.is_category(POSITION, $position4)
        clues.is_category(POSITION, $position5)

        check is_left_right($position4, $position5) \
          and unique($position1, $position2, $position3, $position4, $position5)
    assert
        clues.related(POSITION, $position4, $category_left, $thing_left)
        clues.related(POSITION, $position5, $category_right, $thing_right)


#########################

fc_extras

    def unique(*args):
        return len(args) == len(set(args))

    def is_Edge(pos):
        return (pos == 1) or (pos == 5)

    def is_beside(pos1, pos2):
        diff = (pos1 - pos2)
        return (diff == 1) or (diff == -1)

    def is_left_right(pos_left, pos_right):
        return (pos_right - pos_left == 1)

driver.py (eigentlich größer, aber das ist das Wesentliche)

from pyke import knowledge_engine

engine = knowledge_engine.engine(__file__)
engine.activate('relations')

try:
    natl = engine.prove_1_goal('clues.related(PET, zebra, NATIONALITY, $nationality)')[0].get('nationality')
except Exception, e:
    natl = "Unknown"
print "== Who owns the zebra? %s ==" % natl

Beispielausgabe:

$ python driver.py

== Who owns the zebra? German ==

#   Color    Nationality    Pet    Drink       Smoke    
=======================================================
1   yellow   Norwegian     cats    water    Dunhill     
2   blue     Dane          horse   tea      Blend       
3   red      English       birds   milk     Pall Mall   
4   green    German        zebra   coffee   Prince      
5   white    Swede         dog     beer     Blue Master 

Calculated in 1.19 seconds.

Quelle: https://github.com/DreadPirateShawn/pyke-who-owns-zebra

8

Hier ist ein Auszug aus der full Lösung using NSolver , veröffentlicht unter Einsteins Rätsel in C #:

// The green house's owner drinks coffee
Post(greenHouse.Eq(coffee));
// The person who smokes Pall Mall rears birds 
Post(pallMall.Eq(birds));
// The owner of the yellow house smokes Dunhill 
Post(yellowHouse.Eq(dunhill));
7
Larry OBrien
6
namin

Hier ist eine einfache Lösung in CLP (FD) (siehe auch clpfd ):

:- use_module(library(clpfd)).

solve(ZebraOwner) :-
    maplist( init_dom(1..5), 
        [[British,  Swedish,  Danish,  Norwegian, German],     % Nationalities
         [Red,      Green,    Blue,    White,     Yellow],     % Houses
         [Tea,      Coffee,   Milk,    Beer,      Water],      % Beverages
         [PallMall, Blend,    Prince,  Dunhill,   BlueMaster], % Cigarettes
         [Dog,      Birds,    Cats,    Horse,     Zebra]]),    % Pets
    British #= Red,        % Hint 1
    Swedish #= Dog,        % Hint 2
    Danish #= Tea,         % Hint 3
    Green #= White - 1 ,   % Hint 4
    Green #= Coffee,       % Hint 5
    PallMall #= Birds,     % Hint 6
    Yellow #= Dunhill,     % Hint 7
    Milk #= 3,             % Hint 8
    Norwegian #= 1,        % Hint 9
    neighbor(Blend, Cats),     % Hint 10
    neighbor(Horse, Dunhill),  % Hint 11
    BlueMaster #= Beer,        % Hint 12
    German #= Prince,          % Hint 13
    neighbor(Norwegian, Blue), % Hint 14
    neighbor(Blend, Water),    % Hint 15
    memberchk(Zebra-ZebraOwner, [British-british, Swedish-swedish, Danish-danish,
                                 Norwegian-norwegian, German-german]).

init_dom(R, L) :-
    all_distinct(L),
    L ins R.

neighbor(X, Y) :-
    (X #= (Y - 1)) #\/ (X #= (Y + 1)).

Wenn Sie es ausführen, erzeugen Sie:

3-Zeit (lösen (Z)). 
% 111,798 Folgerungen, 0,016 CPU in 0,020 Sekunden (78% CPU, 7166493 Lippen) 
Z = deutsch.

6
CapelliC

ES6 (Javascript) -Lösung

Mit vielen ES6 Generatoren und ein bisschen lodash . Sie benötigen Babel , um dies auszuführen.

var _ = require('lodash');

function canBe(house, criteria) {
    for (const key of Object.keys(criteria))
        if (house[key] && house[key] !== criteria[key])
            return false;
    return true;
}

function* thereShouldBe(criteria, street) {
    for (const i of _.range(street.length))
        yield* thereShouldBeAtIndex(criteria, i, street);
}

function* thereShouldBeAtIndex(criteria, index, street) {
    if (canBe(street[index], criteria)) {
        const newStreet = _.cloneDeep(street);
        newStreet[index] = _.assign({}, street[index], criteria);
        yield newStreet;
    }
}

function* leftOf(critA, critB, street) {
    for (const i of _.range(street.length - 1)) {
        if (canBe(street[i], critA) && canBe(street[i+1], critB)) {
            const newStreet = _.cloneDeep(street);
            newStreet[i  ] = _.assign({}, street[i  ], critA);
            newStreet[i+1] = _.assign({}, street[i+1], critB);
            yield newStreet;
        }
    }
}
function* nextTo(critA, critB, street) {
    yield* leftOf(critA, critB, street);
    yield* leftOf(critB, critA, street);
}

const street = [{}, {}, {}, {}, {}]; // five houses

// Btw: it turns out we don't need uniqueness constraint.

const constraints = [
    s => thereShouldBe({nation: 'English', color: 'red'}, s),
    s => thereShouldBe({nation: 'Swede', animal: 'dog'}, s),
    s => thereShouldBe({nation: 'Dane', drink: 'tea'}, s),
    s => leftOf({color: 'green'}, {color: 'white'}, s),
    s => thereShouldBe({drink: 'coffee', color: 'green'}, s),
    s => thereShouldBe({cigarettes: 'PallMall', animal: 'birds'}, s),
    s => thereShouldBe({color: 'yellow', cigarettes: 'Dunhill'}, s),
    s => thereShouldBeAtIndex({drink: 'milk'}, 2, s),
    s => thereShouldBeAtIndex({nation: 'Norwegian'}, 0, s),
    s => nextTo({cigarettes: 'Blend'}, {animal: 'cats'}, s),
    s => nextTo({animal: 'horse'}, {cigarettes: 'Dunhill'}, s),
    s => thereShouldBe({cigarettes: 'BlueMaster', drink: 'beer'}, s),
    s => thereShouldBe({nation: 'German', cigarettes: 'Prince'}, s),
    s => nextTo({nation: 'Norwegian'}, {color: 'blue'}, s),
    s => nextTo({drink: 'water'}, {cigarettes: 'Blend'}, s),

    s => thereShouldBe({animal: 'zebra'}, s), // should be somewhere
];

function* findSolution(remainingConstraints, street) {
    if (remainingConstraints.length === 0)
        yield street;
    else
        for (const newStreet of _.head(remainingConstraints)(street))
            yield* findSolution(_.tail(remainingConstraints), newStreet);
}

for (const streetSolution of findSolution(constraints, street)) {
    console.log(streetSolution);
}

Ergebnis:

[ { color: 'yellow',
    cigarettes: 'Dunhill',
    nation: 'Norwegian',
    animal: 'cats',
    drink: 'water' },
  { nation: 'Dane',
    drink: 'tea',
    cigarettes: 'Blend',
    animal: 'horse',
    color: 'blue' },
  { nation: 'English',
    color: 'red',
    cigarettes: 'PallMall',
    animal: 'birds',
    drink: 'milk' },
  { color: 'green',
    drink: 'coffee',
    nation: 'German',
    cigarettes: 'Prince',
    animal: 'zebra' },
  { nation: 'Swede',
    animal: 'dog',
    color: 'white',
    cigarettes: 'BlueMaster',
    drink: 'beer' } ]

Die Laufzeit beträgt für mich etwa 2,5 Sekunden, aber dies kann durch Ändern der Reihenfolge der Regeln erheblich verbessert werden. Ich habe mich entschieden, die ursprüngliche Reihenfolge der Klarheit halber beizubehalten.

Danke, das war eine coole Herausforderung!

5
mik01aj

Dies ist wirklich ein Problem, das die Einschränkung löst. Sie können dies mit einer verallgemeinerten Art der Einschränkungsausbreitung in der Logikprogrammierung wie Sprachen tun. Wir haben eine Demo speziell für das Zebra-Problem im ALE-System (Attribute Logic Engine):

http://www.cs.toronto.edu/~gpenn/ale.html

Hier ist der Link zur Kodierung eines vereinfachten Zebra-Puzzles:

http://www.cs.toronto.edu/~gpenn/ale/files/grammars/baby.pl

Dies effizient zu tun, ist eine andere Sache.

3
Bob Carpenter

Die einfachste Möglichkeit, solche Probleme programmgesteuert zu lösen, besteht darin, verschachtelte Schleifen für alle Permutationen zu verwenden und zu prüfen, ob das Ergebnis die Prädikate in der Frage erfüllt. Viele der Prädikate können von der inneren Schleife zu den äußeren Schleifen gehoben werden, um die rechnerische Komplexität drastisch zu reduzieren, bis die Antwort in einer vernünftigen Zeit berechnet werden kann.

Hier ist eine einfache F # -Lösung aus einem Artikel im F # Journal :

let rec distribute y xs =
  match xs with
  | [] -> [[y]]
  | x::xs -> (y::x::xs)::[for xs in distribute y xs -> x::xs]

let rec permute xs =
  match xs with
  | [] | [_] as xs -> [xs]
  | x::xs -> List.collect (distribute x) (permute xs)

let find xs x = List.findIndex ((=) x) xs + 1

let eq xs x ys y = find xs x = find ys y

let nextTo xs x ys y = abs(find xs x - find ys y) = 1

let nations = ["British"; "Swedish"; "Danish"; "Norwegian"; "German"]

let houses = ["Red"; "Green"; "Blue"; "White"; "Yellow"]

let drinks = ["Milk"; "Coffee"; "Water"; "Beer"; "Tea"]

let smokes = ["Blend"; "Prince"; "Blue Master"; "Dunhill"; "Pall Mall"]

let pets = ["Dog"; "Cat"; "Zebra"; "Horse"; "Bird"]

[ for nations in permute nations do
    if find nations "Norwegian" = 1 then
      for houses in permute houses do
        if eq nations "British" houses "Red" &&
           find houses "Green" = find houses "White"-1 &&
           nextTo nations "Norwegian" houses "Blue" then
          for drinks in permute drinks do
            if eq nations "Danish" drinks "Tea" &&
               eq houses "Green" drinks "Coffee" &&
               3 = find drinks "Milk" then
              for smokes in permute smokes do
                if eq houses "Yellow" smokes "Dunhill" &&
                   eq smokes "Blue Master" drinks "Beer" &&
                   eq nations "German" smokes "Prince" &&
                   nextTo smokes "Blend" drinks "Water" then
                  for pets in permute pets do
                    if eq nations "Swedish" pets "Dog" &&
                       eq smokes "Pall Mall" pets "Bird" &&
                       nextTo pets "Cat" smokes "Blend" &&
                       nextTo pets "Horse" smokes "Dunhill" then
                      yield nations, houses, drinks, smokes, pets ]

Die in 9 ms erhaltene Ausgabe ist:

val it :
  (string list * string list * string list * string list * string list) list =
  [(["Norwegian"; "Danish"; "British"; "German"; "Swedish"],
    ["Yellow"; "Blue"; "Red"; "Green"; "White"],
    ["Water"; "Tea"; "Milk"; "Coffee"; "Beer"],
    ["Dunhill"; "Blend"; "Pall Mall"; "Prince"; "Blue Master"],
    ["Cat"; "Horse"; "Bird"; "Zebra"; "Dog"])]
2
Jon Harrop

Das Microsoft Solver Foundation-Beispiel aus: https://msdn.Microsoft.com/en-us/library/ff525831%28v=vs.93%29.aspx?f=255&MSPPError=-2147217396

delegate CspTerm NamedTerm(string name);

public static void Zebra() {
  ConstraintSystem S = ConstraintSystem.CreateSolver();
  var termList = new List<KeyValuePair<CspTerm, string>>();

  NamedTerm House = delegate(string name) {
    CspTerm x = S.CreateVariable(S.CreateIntegerInterval(1, 5), name);
    termList.Add(new KeyValuePair<CspTerm, string>(x, name));
    return x;
  };

  CspTerm English = House("English"), Spanish = House("Spanish"),
    Japanese = House("Japanese"), Italian = House("Italian"),
    Norwegian = House("Norwegian");
  CspTerm red = House("red"), green = House("green"),
    white = House("white"),
    blue = House("blue"), yellow = House("yellow");
  CspTerm dog = House("dog"), snails = House("snails"),
    fox = House("fox"),
    horse = House("horse"), zebra = House("zebra");
  CspTerm Painter = House("Painter"), sculptor = House("sculptor"),
    diplomat = House("diplomat"), violinist = House("violinist"),
    doctor = House("doctor");
  CspTerm tea = House("tea"), coffee = House("coffee"),
    milk = House("milk"),
    juice = House("juice"), water = House("water");

  S.AddConstraints(
    S.Unequal(English, Spanish, Japanese, Italian, Norwegian),
    S.Unequal(red, green, white, blue, yellow),
    S.Unequal(dog, snails, fox, horse, zebra),
    S.Unequal(Painter, sculptor, diplomat, violinist, doctor),
    S.Unequal(tea, coffee, milk, juice, water),
    S.Equal(English, red),
    S.Equal(Spanish, dog),
    S.Equal(Japanese, Painter),
    S.Equal(Italian, tea),
    S.Equal(1, Norwegian),
    S.Equal(green, coffee),
    S.Equal(1, green - white),
    S.Equal(sculptor, snails),
    S.Equal(diplomat, yellow),
    S.Equal(3, milk),
    S.Equal(1, S.Abs(Norwegian - blue)),
    S.Equal(violinist, juice),
    S.Equal(1, S.Abs(fox - doctor)),
    S.Equal(1, S.Abs(horse - diplomat))
  );
  bool unsolved = true;
  ConstraintSolverSolution soln = S.Solve();

  while (soln.HasFoundSolution) {
    unsolved = false;
    System.Console.WriteLine("solved.");
    StringBuilder[] houses = new StringBuilder[5];
    for (int i = 0; i < 5; i++)
      houses[i] = new StringBuilder(i.ToString());
    foreach (KeyValuePair<CspTerm, string> kvp in termList) {
      string item = kvp.Value;
      object house;
      if (!soln.TryGetValue(kvp.Key, out house))
        throw new InvalidProgramException(
                    "can't find a Term in the solution: " + item);
      houses[(int)house - 1].Append(", ");
      houses[(int)house - 1].Append(item);
    }
    foreach (StringBuilder house in houses) {
      System.Console.WriteLine(house);
    }
    soln.GetNext();
  }
  if (unsolved)
    System.Console.WriteLine("No solution found.");
  else
    System.Console.WriteLine(
"Expected: the Norwegian drinking water and the Japanese with the zebra.");
}
0
b_levitt

Dies ist eine MiniZinc-Lösung für das in Wikipedia definierte Zebrapuzzle:

include "globals.mzn";

% Zebra puzzle
int: nc = 5;

% Colors
int: red = 1;
int: green = 2;
int: ivory = 3;
int: yellow = 4;
int: blue = 5;
array[1..nc] of var 1..nc:color;
constraint alldifferent([color[i] | i in 1..nc]);

% Nationalities
int: eng = 1;
int: spa = 2;
int: ukr = 3;
int: nor = 4;
int: jap = 5;
array[1..nc] of var 1..nc:nationality;
constraint alldifferent([nationality[i] | i in 1..nc]);

% Pets
int: dog = 1;
int: snail = 2;
int: fox = 3;
int: horse = 4;
int: zebra = 5;
array[1..nc] of var 1..nc:pet;
constraint alldifferent([pet[i] | i in 1..nc]);

% Drinks
int: coffee = 1;
int: tea = 2;
int: milk = 3;
int: orange = 4;
int: water = 5;
array[1..nc] of var 1..nc:drink;
constraint alldifferent([drink[i] | i in 1..nc]);

% Smokes
int: oldgold = 1;
int: kools = 2;
int: chesterfields = 3;
int: luckystrike = 4;
int: parliaments = 5;
array[1..nc] of var 1..nc:smoke;
constraint alldifferent([smoke[i] | i in 1..nc]);

% The Englishman lives in the red house.
constraint forall ([nationality[i] == eng <-> color[i] == red | i in 1..nc]);

% The Spaniard owns the dog.
constraint forall ([nationality[i] == spa <-> pet[i] == dog | i in 1..nc]);

% Coffee is drunk in the green house.
constraint forall ([color[i] == green <-> drink[i] == coffee | i in 1..nc]);

% The Ukrainian drinks tea.
constraint forall ([nationality[i] == ukr <-> drink[i] == tea | i in 1..nc]);

% The green house is immediately to the right of the ivory house.
constraint forall ([color[i] == ivory -> if i<nc then color[i+1] == green else false endif | i in 1..nc]);

% The Old Gold smoker owns snails.
constraint forall ([smoke[i] == oldgold <-> pet[i] == snail | i in 1..nc]);

% Kools are smoked in the yellow house.
constraint forall ([smoke[i] == kools <-> color[i] == yellow | i in 1..nc]);

% Milk is drunk in the middle house.
constraint drink[3] == milk;

% The Norwegian lives in the first house.
constraint nationality[1] == nor;

% The man who smokes Chesterfields lives in the house next to the man with the fox.
constraint forall ([smoke[i] == chesterfields -> (if i>1 then pet[i-1] == fox else false endif \/ if i<nc then pet[i+1] == fox else false endif) | i in 1..nc]);

% Kools are smoked in the house next to the house where the horse is kept.
constraint forall ([smoke[i] == kools -> (if i>1 then pet[i-1] == horse else false endif \/ if i<nc then pet[i+1] == horse else false endif)| i in 1..nc]);

%The Lucky Strike smoker drinks orange juice.
constraint forall ([smoke[i] == luckystrike <-> drink[i] == orange | i in 1..nc]);

% The Japanese smokes Parliaments.
constraint forall ([nationality[i] == jap <-> smoke[i] == parliaments | i in 1..nc]);

% The Norwegian lives next to the blue house.
constraint forall ([color[i] == blue -> (if i > 1 then nationality[i-1] == nor else false endif \/ if i<nc then nationality[i+1] == nor else false endif) | i in 1..nc]);

solve satisfy;

Lösung:

Compiling zebra.mzn
Running zebra.mzn
color = array1d(1..5 ,[4, 5, 1, 3, 2]);
nationality = array1d(1..5 ,[4, 3, 1, 2, 5]);
pet = array1d(1..5 ,[3, 4, 2, 1, 5]);
drink = array1d(1..5 ,[5, 2, 3, 4, 1]);
smoke = array1d(1..5 ,[2, 3, 1, 4, 5]);
----------
Finished in 47msec
0
Tarik