it-swarm.com.de

Inversionen in einem Array zählen

Ich entwerfe einen Algorithmus, um Folgendes zu tun: Gegebenes Array A[1... n] finde für jeden i < j alle Inversionspaare, so dass A[i] > A[j]. Ich verwende Sortierreihenfolge und kopiere Array A in Array B und vergleiche dann die beiden Arrays, aber es fällt mir schwer, herauszufinden, wie ich die Anzahl der Inversionen ermitteln kann. Alle Hinweise oder Hilfe wäre sehr dankbar.

91
el diablo

Der einzige Rat, den ich dazu geben könnte (was verdächtig nach einer Hausaufgabenfrage aussieht;)), besteht darin, es zunächst manuell mit einer kleinen Anzahl von Zahlen (z. B. 5) auszuführen, und dann die Schritte zur Lösung des Problems aufzuschreiben.

Auf diese Weise können Sie eine generische Lösung ermitteln, mit der Sie den Code schreiben können.

43
Andrew Rollings

Hier ist also eine O (n log n) -Lösung in Java. 

long merge(int[] arr, int[] left, int[] right) {
    int i = 0, j = 0, count = 0;
    while (i < left.length || j < right.length) {
        if (i == left.length) {
            arr[i+j] = right[j];
            j++;
        } else if (j == right.length) {
            arr[i+j] = left[i];
            i++;
        } else if (left[i] <= right[j]) {
            arr[i+j] = left[i];
            i++;                
        } else {
            arr[i+j] = right[j];
            count += left.length-i;
            j++;
        }
    }
    return count;
}

long invCount(int[] arr) {
    if (arr.length < 2)
        return 0;

    int m = (arr.length + 1) / 2;
    int left[] = Arrays.copyOfRange(arr, 0, m);
    int right[] = Arrays.copyOfRange(arr, m, arr.length);

    return invCount(left) + invCount(right) + merge(arr, left, right);
}

Dies ist fast normale Zusammenführungssortierung, die gesamte Magie ist in der Zusammenführungsfunktion verborgen. Beachten Sie, dass beim Sortieralgorithmus Inversionen entfernt werden . Beim Zusammenführen der Algorithmen zählt die Anzahl der entfernten Inversionen (sortiert).

Der einzige Moment, in dem Inversionen entfernt werden, ist, wenn der Algorithmus ein Element von der rechten Seite eines Arrays nimmt und es mit dem Hauptarray zusammenführt .. Die Anzahl der durch diese Operation entfernten Inversionen ist die Anzahl der Elemente, die vom linken Array übrig bleiben verschmolzen werden :)

Ich hoffe es ist erklärend genug.

125
Marek Kirejczyk

Ich habe es in der Zeit O (n * log n) mit der folgenden Methode gefunden.

  1. Sortiere Array A zusammen und erstelle eine Kopie (Array B)
  2. Nimm A [1] und finde über eine binäre Suche seine Position im sortierten Feld B. Die Anzahl der Inversionen für dieses Element ist um eins niedriger als die Indexnummer seiner Position in B, da jede niedrigere Nummer, die nach dem ersten Element von A erscheint, eine Inversion ist. 

    2a. akkumulieren die Anzahl der Inversionen, um der Variablen num_inversions zu begegnen.

    2b. entfernen Sie A [1] von Array A und auch von seiner entsprechenden Position in Array B

  3. wiederholen Sie den Vorgang von Schritt 2, bis in A keine weiteren Elemente vorhanden sind.

Hier ist ein Beispiel für diesen Algorithmus. Originalarray A = (6, 9, 1, 14, 8, 12, 3, 2)

1: Zusammenführen sortieren und in Array B kopieren

B = (1, 2, 3, 6, 8, 9, 12, 14)

2: Nehmen Sie A [1] und binäre Suche, um sie in Feld B zu finden

A [1] = 6

B = (1, 2, 3, 6 , 8, 9, 12, 14)

6 befindet sich in der vierten Position von Feld B, daher gibt es 3 Inversionen. Wir wissen das, weil sich 6 in der ersten Position in Feld A befand, daher hätte jedes Element mit niedrigerem Wert, das anschließend in Feld A erscheint, einen Index von j> i (da i in diesem Fall 1 ist).

2.b: Entfernen Sie A [1] von Array A und auch von seiner entsprechenden Position in Array B (Fettgedruckte Elemente werden entfernt).

A = ( 6, 9, 1, 14, 8, 12, 3, 2) = (9, 1, 14, 8, 12, 3, 2)

B = (1, 2, 3, 6, 8, 9, 12, 14) = (1, 2, 3, 8, 9, 12, 14)

3: Führen Sie die neuen A- und B-Arrays von Schritt 2 aus erneut aus.

A [1] = 9

B = (1, 2, 3, 8, 9, 12, 14)

9 befindet sich jetzt an fünfter Stelle von Feld B, daher gibt es 4 Inversionen. Wir wissen das, weil 9 in der ersten Position in Feld A war. Daher hätte jedes Element mit dem niedrigeren Wert einen Index von j> i (da i in diesem Fall wieder 1 ist) . Entfernen Sie A [1] von Array A und auch von seiner entsprechenden Position in Array B (Fettgedruckte Elemente werden entfernt)

A = ( 9 , 1, 14, 8, 12, 3, 2) = (1, 14, 8, 12, 3, 2)

B = (1, 2, 3, 8, 9 , 12, 14) = (1, 2, 3, 8, 12, 14)

Wenn Sie in dieser Richtung fortfahren, erhalten Sie die Gesamtzahl der Inversionen für Array A, sobald die Schleife abgeschlossen ist.

Schritt 1 (Zusammenführungssortierung) würde O (n * log n) zur Ausführung benötigen. Schritt 2 würde n-mal ausführen und bei jeder Ausführung eine binäre Suche durchführen, bei der O (log n) für eine Gesamtmenge von O (n * log n) ausgeführt wird. Die Gesamtlaufzeit wäre somit O (n * log n) + O (n * log n) = O (n * log n).

Danke für Ihre Hilfe. Das Aufschreiben der Probenarrays auf ein Blatt Papier half wirklich, das Problem zu visualisieren.

84
el diablo

In Python

# O(n log n)

def count_inversion(lst):
    return merge_count_inversion(lst)[1]

def merge_count_inversion(lst):
    if len(lst) <= 1:
        return lst, 0
    middle = int( len(lst) / 2 )
    left, a = merge_count_inversion(lst[:middle])
    right, b = merge_count_inversion(lst[middle:])
    result, c = merge_count_split_inversion(left, right)
    return result, (a + b + c)

def merge_count_split_inversion(left, right):
    result = []
    count = 0
    i, j = 0, 0
    left_len = len(left)
    while i < left_len and j < len(right):
        if left[i] <= right[j]:
            result.append(left[i])
            i += 1
        else:
            result.append(right[j])
            count += left_len - i
            j += 1
    result += left[i:]
    result += right[j:]
    return result, count        


#test code
input_array_1 = []  #0
input_array_2 = [1] #0
input_array_3 = [1, 5]  #0
input_array_4 = [4, 1] #1
input_array_5 = [4, 1, 2, 3, 9] #3
input_array_6 = [4, 1, 3, 2, 9, 5]  #5
input_array_7 = [4, 1, 3, 2, 9, 1]  #8

print count_inversion(input_array_1)
print count_inversion(input_array_2)
print count_inversion(input_array_3)
print count_inversion(input_array_4)
print count_inversion(input_array_5)
print count_inversion(input_array_6)
print count_inversion(input_array_7)
26
mkso

Ich frage mich, warum niemand binär indizierte Bäume noch nicht erwähnt hat. Sie können eine verwenden, um Präfixsummen für die Werte Ihrer Permutationselemente zu verwalten. Dann können Sie einfach von rechts nach links vorgehen und für jedes Element die Anzahl der Elemente zählen, die kleiner als rechts sind:

def count_inversions(a):
  res = 0
  counts = [0]*(len(a)+1)
  rank = { v : i+1 for i, v in enumerate(sorted(a)) }
  for x in reversed(a):
    i = rank[x] - 1
    while i:
      res += counts[i]
      i -= i & -i
    i = rank[x]
    while i <= len(a):
      counts[i] += 1
      i += i & -i
  return res

Die Komplexität ist O (n log n) und der konstante Faktor ist sehr niedrig.

20
Niklas B.

Ich hatte eine ähnliche Frage für Hausaufgaben. Ich war eingeschränkt, dass es O(nlogn) Effizienz haben muss.

Ich habe die von Ihnen vorgeschlagene Idee der Verwendung von Mergesort verwendet, da diese bereits die richtige Effizienz aufweist. Ich habe gerade etwas Code in die Mischfunktion eingefügt, die im Wesentlichen Folgendes war: Wenn eine Zahl aus dem rechten Array zum Ausgabearray hinzugefügt wird, füge ich zur Gesamtzahl der Inversionen die Anzahl der verbleibenden Zahlen hinzu Array.

Das macht für mich jetzt viel Sinn, da ich genug darüber nachgedacht habe. Sie zählen, wie oft eine größere Zahl vor einer Zahl steht.

hth.

14
statistic

Die Anzahl der Inversionen kann ermittelt werden, indem der Zusammenführungsprozess in der Zusammenführungssortierung analysiert wird: merge process

Wenn Sie ein Element aus dem zweiten Array in das Merge-Array kopieren (in diesem Beispiel die 9), bleibt es relativ zu anderen Elementen. Wenn Sie ein Element aus dem ersten Array in das Merge-Array (hier die 5) kopieren, wird es invertiert, wobei sich alle Elemente im zweiten Array befinden (2 Inversionen mit 3 und 4). Eine kleine Änderung der Zusammenführungssorte kann also das Problem in O (n ln n) lösen.
... Zum Beispiel, kommentieren Sie einfach die beiden # Zeilen im Mergesort-Python-Code, um die Zählung zu erhalten. 

def merge(l1,l2):
    l = []
    # global count
    while l1 and l2:
        if l1[-1] <= l2[-1]:
            l.append(l2.pop())
        else:
            l.append(l1.pop())
            # count += len(l2)
    l.reverse()
    return l1 + l2 + l

def sort(l): 
    t = len(l) // 2
    return merge(sort(l[:t]), sort(l[t:])) if t > 0 else l

count=0
print(sort([5,1,2,4,9,3]), count)
# [1, 2, 3, 4, 5, 9] 6

EDIT 1

Die gleiche Aufgabe kann mit einer stabilen Version von quick sort erreicht werden, die bekanntermaßen etwas schneller ist:

def part(l):
    pivot=l[-1]
    small,big = [],[]
    count = big_count = 0
    for x in l:
        if x <= pivot:
            small.append(x)
            count += big_count
        else:
            big.append(x)
            big_count += 1
    return count,small,big

def quick_count(l):
    if len(l)<2 : return 0
    count,small,big = part(l)
    small.pop()
    return count + quick_count(small) + quick_count(big)

Wenn Sie Pivot als letztes Element auswählen, werden Inversionen gut gezählt und die Ausführungszeit ist um 40% besser als die oben beschriebene Zusammenführung. 

EDIT 2 

Für die Performance in Python eine numpy & numba-Version:

Zuerst der numpy-Teil, der argsort O (n ln n) verwendet: 

def count_inversions(a):
    n = a.size
    counts = np.arange(n) & -np.arange(n)  # The BIT
    ags = a.argsort(kind='mergesort')    
    return  BIT(ags,counts,n)

Und der numba Teil für den effizienten BIT-Ansatz :

@numba.njit
def BIT(ags,counts,n):
    res = 0        
    for x in ags :
        i = x
        while i:
            res += counts[i]
            i -= i & -i
        i = x+1
        while i < n:
            counts[i] -= 1
            i += i & -i
    return  res  
10
B. M.

Beachten Sie, dass die Antwort von Geoffrey Irving falsch ist. 

Die Anzahl der Inversionen in einem Array ist die Hälfte der gesamten Entfernungselemente, die verschoben werden müssen, um das Array zu sortieren. Daher kann es berechnet werden, indem das Array sortiert wird, die resultierende Permutation p [i] beibehalten wird und dann die Summe von abs (p [i] -i)/2 berechnet wird. Dies dauert O (n log n) Zeit, was optimal ist.

Eine alternative Methode finden Sie unter http://mathworld.wolfram.com/PermutationInversion.html . Dieses Verfahren ist äquivalent zur Summe von max (0, p [i] -i), die gleich der Summe von abs (p [i] -i])/2 ist, da die Gesamtlänge der nach links gerichteten Elemente gleich ist Gesamtentfernungselemente bewegen sich nach rechts.

Nehmen Sie die Sequenz {3, 2, 1} als Beispiel. Es gibt drei Inversionen: (3, 2), (3, 1), (2, 1), so dass die Inversionszahl 3 ist. Gemäß der zitierten Methode wäre die Antwort jedoch 2 gewesen.

8
user1465038

Der Hauptzweck dieser Antwort ist es, die Geschwindigkeiten der verschiedenen Python - Versionen zu vergleichen, aber ich habe auch einige eigene Beiträge. (FWIW, ich habe diese Frage gerade entdeckt, als ich eine Duplikatsuche durchgeführt habe).

Die relativen Ausführungsgeschwindigkeiten von in CPython implementierten Algorithmen können sich von denen unterscheiden, die man von einer einfachen Analyse der Algorithmen und von Erfahrungen mit anderen Sprachen erwarten würde. Das liegt daran, dass Python in C implementierte leistungsstarke Funktionen und Methoden bietet, die Listen und andere Sammlungen mit einer Geschwindigkeit verarbeiten können, die man in einer vollständig kompilierten Sprache erreichen würde, sodass diese Operationen viel schneller ausgeführt werden als entsprechende implementierte Algorithmen. " manuell "mit Python Code.

Code, der diese Tools nutzt, kann theoretisch überlegene Algorithmen übertreffen, die versuchen, alles mit Python - Operationen an einzelnen Elementen der Sammlung zu tun. Natürlich wirkt sich auch hier die tatsächlich verarbeitete Datenmenge aus. Bei moderaten Datenmengen kann Code, der einen O (n²) -Algorithmus verwendet, der mit C-Geschwindigkeit ausgeführt wird, einen O (n log n) -Algorithmus leicht übertreffen, der den Großteil seiner Arbeit mit einzelnen Python - Operationen erledigt.

Viele der veröffentlichten Antworten auf diese Frage zur Inversionszählung verwenden einen auf Mergesort basierenden Algorithmus. Theoretisch ist dies ein guter Ansatz, es sei denn, die Arraygröße ist sehr klein. Aber Pythons eingebauter TimSort ​​(ein hybrider stabiler Sortieralgorithmus, der von Mergesort und Insertionssort abgeleitet ist) läuft mit C-Geschwindigkeit, und eine von Hand in Python codierte Mergesort kann nicht mithalten es für die Geschwindigkeit.

Eine der faszinierenderen Lösungen in die Antwort von Niklas B verwendet die eingebaute Sortierung, um die Rangfolge der Array-Elemente zu bestimmen, und einen Binary Indexed Tree ( aka Fenwick-Baum), um die kumulativen Summen zu speichern, die zur Berechnung der Inversionszahl erforderlich sind. Während ich versuchte, diese Datenstruktur und Niklas 'Algorithmus zu verstehen, schrieb ich einige eigene Variationen (siehe unten). Aber ich habe auch festgestellt, dass es für moderate Listengrößen tatsächlich schneller ist, Pythons eingebaute sum -Funktion zu verwenden als den schönen Fenwick-Baum.

def count_inversions(a):
    total = 0
    counts = [0] * len(a)
    rank = {v: i for i, v in enumerate(sorted(a))}
    for u in reversed(a):
        i = rank[u]
        total += sum(counts[:i])
        counts[i] += 1
    return total

Wenn die Listengröße etwa 500 erreicht, taucht der O (n²) -Aspekt des Aufrufs von sum in dieser for -Schleife schließlich auf und die Leistung beginnt zu sinken.

Mergesort ist nicht die einzige Sortierung O(nlogn), und mehrere andere können verwendet werden, um die Inversionszählung durchzuführen. prasadvks Antwort ​​verwendet eine binäre Baumsortierung, sein Code scheint jedoch in C++ oder einer seiner Ableitungen zu sein. Also habe ich eine Python Version hinzugefügt. Ich habe ursprünglich eine Klasse verwendet, um die Baumknoten zu implementieren, aber festgestellt, dass ein Diktat spürbar schneller ist. Ich habe schließlich list verwendet, was sogar noch schneller ist, obwohl dadurch der Code etwas weniger lesbar wird.

Ein Bonus von treesort ist, dass es viel einfacher ist, es iterativ zu implementieren als Mergesort. Python optimiert die Rekursion nicht und hat ein Limit für die Rekursionstiefe (obwohl das erhöht werden kann, wenn Sie es wirklich brauchen). Und natürlich sind Python -Funktionsaufrufe relativ langsam. Wenn Sie also versuchen, die Geschwindigkeit zu optimieren, sollten Sie Funktionsaufrufe vermeiden, wenn dies sinnvoll ist.

Eine andere Sorte O(nlogn) ist die ehrwürdige Radix-Sorte. Der große Vorteil ist, dass die Schlüssel nicht miteinander verglichen werden. Der Nachteil ist, dass es am besten für zusammenhängende Folgen von ganzen Zahlen funktioniert, idealerweise eine Permutation von ganzen Zahlen in range(b**m), wobei b normalerweise 2 ist Lesen Sie Inversionen zählen, Offline-Orthogonal-Range-Counting und verwandte Probleme , das in Berechnung der Anzahl von “Inversionen” in einer Permutation verknüpft ist.

Um die Radix-Sortierung effektiv zum Zählen von Inversionen in einer allgemeinen Sequenz seq der Länge n zu verwenden, können wir eine Permutation von range(n) erstellen, die dieselbe Anzahl von Inversionen wie seq hat. . Wir können das (im schlimmsten Fall) O(nlogn) rechtzeitig über TimSort erledigen. Der Trick besteht darin, die Indizes von seq durch Sortieren von seq zu permutieren. Es ist einfacher, dies mit einem kleinen Beispiel zu erklären.

seq = [15, 14, 11, 12, 10, 13]
b = [t[::-1] for t in enumerate(seq)]
print(b)
b.sort()
print(b)

Ausgabe

[(15, 0), (14, 1), (11, 2), (12, 3), (10, 4), (13, 5)]
[(10, 4), (11, 2), (12, 3), (13, 5), (14, 1), (15, 0)]

Durch Sortieren der (Wert-, Index-) Paare von seq haben wir die Indizes von seq mit der gleichen Anzahl von Swaps permutiert, die erforderlich sind, um seq in ihre zu setzen ursprüngliche Reihenfolge aus der sortierten Reihenfolge. Wir können diese Permutation erstellen, indem wir range(n) mit einer geeigneten Schlüsselfunktion sortieren:

print(sorted(range(len(seq)), key=lambda k: seq[k]))

Ausgabe

[4, 2, 3, 5, 1, 0]

Wir können das lambda vermeiden, indem wir die .__getitem__ -Methode von seq verwenden:

sorted(range(len(seq)), key=seq.__getitem__)

Dies ist nur geringfügig schneller, aber wir suchen nach allen möglichen Geschwindigkeitsverbesserungen. ;)


Mit dem folgenden Code werden timeit Tests für alle vorhandenen Python - Algorithmen auf dieser Seite ausgeführt, und einige meiner eigenen: ein paar Brute-Force-O (n²) ) Versionen, einige Variationen des Algorithmus von Niklas B und natürlich eine auf Mergesort basierende (die ich geschrieben habe, ohne auf die vorhandenen Antworten zu verweisen). Es hat auch meinen listenbasierten TreeSort-Code, der grob aus dem Code von prasadvk abgeleitet ist, und verschiedene Funktionen, die auf der Radix-Sortierung basieren, wobei einige eine ähnliche Strategie wie die Mergesort-Ansätze verwenden, und andere sum oder einen Fenwick-Baum.

Dieses Programm misst die Ausführungszeit jeder Funktion in einer Reihe von Zufallslisten mit ganzen Zahlen. Es kann auch überprüft werden, ob jede Funktion dieselben Ergebnisse wie die anderen liefert und die Eingabeliste nicht verändert.

Jeder timeit -Aufruf ergibt einen Vektor mit 3 Ergebnissen, die ich sortiere. Der hier zu betrachtende Hauptwert ist der Mindestwert, die anderen Werte geben lediglich einen Hinweis darauf, wie zuverlässig dieser Mindestwert ist, wie in der Anmerkung in the timeit module docs erläutert .

Leider ist die Ausgabe dieses Programms zu groß, um in dieser Antwort enthalten zu sein. Deshalb poste ich sie in seine eigene (Community-Wiki) Antwort .

Die Ausgabe stammt von 3 Läufen auf meiner alten 32-Bit-Single-Core-2-GHz-Maschine, auf der Python 3.6.0 auf einer alten, von Debian abgeleiteten Distribution ausgeführt wird. YMMV. Während der Tests habe ich meinen Webbrowser heruntergefahren und die Verbindung zu meinem Router getrennt, um die Auswirkungen anderer Aufgaben auf die CPU zu minimieren.

Der erste Durchlauf testet alle Funktionen mit Listengrößen von 5 bis 320, mit Schleifengrößen von 4096 bis 64 (wenn sich die Listengröße verdoppelt, halbiert sich die Schleifengröße). Der zufällige Pool, der zum Erstellen jeder Liste verwendet wird, ist halb so groß wie die Liste selbst, sodass wir wahrscheinlich lots von Duplikaten erhalten. Einige der Inversionszählungsalgorithmen reagieren empfindlicher auf Duplikate als andere.

Der zweite Durchlauf verwendet größere Listen: 640 bis 10240 und eine feste Schleifengröße von 8. Um Zeit zu sparen, werden einige der langsamsten Funktionen aus den Tests entfernt. Meine Brute-Force-O (n²) -Funktionen sind bei diesen Größen einfach way zu langsam, und wie bereits erwähnt, mein Code, der sum verwendet, tut dies auch gut auf kleinen bis mittleren Listen, kann einfach nicht auf großen Listen mithalten.

Der letzte Durchlauf umfasst Listengrößen von 20480 bis 655360 und eine feste Schleifengröße von 4 mit den 8 schnellsten Funktionen. Bei Listengrößen unter 40.000 ist der Code von Tim Babych der klare Gewinner. Gut gemacht, Tim! Der Code von Niklas B ist ebenfalls ein guter Allrounder, obwohl er auf den kleineren Listen besser abschneidet. Der halbierungsbasierte Code von "Python" funktioniert auch recht gut, obwohl er bei großen Listen mit vielen Duplikaten etwas langsamer zu sein scheint, wahrscheinlich aufgrund der linearen while -Schleife, die er verwendet, um über Dupes zu springen.

Bei den sehr großen Listengrößen können die Algorithmen auf der Grundlage der Halbierung jedoch nicht mit den echten Algorithmen O(nlogn) konkurrieren.

#!/usr/bin/env python3

''' Test speeds of various ways of counting inversions in a list

    The inversion count is a measure of how sorted an array is.
    A pair of items in a are inverted if i < j but a[j] > a[i]

    See https://stackoverflow.com/questions/337664/counting-inversions-in-an-array

    This program contains code by the following authors:
    mkso
    Niklas B
    B. M.
    Tim Babych
    python
    Zhe Hu
    prasadvk
    noman pouigt
    PM 2Ring

    Timing and verification code by PM 2Ring
    Collated 2017.12.16
    Updated 2017.12.21
'''

from timeit import Timer
from random import seed, randrange
from bisect import bisect, insort_left

seed('A random seed string')

# Merge sort version by mkso
def count_inversion_mkso(lst):
    return merge_count_inversion(lst)[1]

def merge_count_inversion(lst):
    if len(lst) <= 1:
        return lst, 0
    middle = len(lst) // 2
    left, a = merge_count_inversion(lst[:middle])
    right, b = merge_count_inversion(lst[middle:])
    result, c = merge_count_split_inversion(left, right)
    return result, (a + b + c)

def merge_count_split_inversion(left, right):
    result = []
    count = 0
    i, j = 0, 0
    left_len = len(left)
    while i < left_len and j < len(right):
        if left[i] <= right[j]:
            result.append(left[i])
            i += 1
        else:
            result.append(right[j])
            count += left_len - i
            j += 1
    result += left[i:]
    result += right[j:]
    return result, count

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
# Using a Binary Indexed Tree, aka a Fenwick tree, by Niklas B.
def count_inversions_NiklasB(a):
    res = 0
    counts = [0] * (len(a) + 1)
    rank = {v: i for i, v in enumerate(sorted(a), 1)}
    for x in reversed(a):
        i = rank[x] - 1
        while i:
            res += counts[i]
            i -= i & -i
        i = rank[x]
        while i <= len(a):
            counts[i] += 1
            i += i & -i
    return res

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
# Merge sort version by B.M
# Modified by PM 2Ring to deal with the global counter
bm_count = 0

def merge_count_BM(seq):
    global bm_count
    bm_count = 0
    sort_bm(seq)
    return bm_count

def merge_bm(l1,l2):
    global bm_count
    l = []
    while l1 and l2:
        if l1[-1] <= l2[-1]:
            l.append(l2.pop())
        else:
            l.append(l1.pop())
            bm_count += len(l2)
    l.reverse()
    return l1 + l2 + l

def sort_bm(l):
    t = len(l) // 2
    return merge_bm(sort_bm(l[:t]), sort_bm(l[t:])) if t > 0 else l

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
# Bisection based method by Tim Babych
def solution_TimBabych(A):
    sorted_left = []
    res = 0
    for i in range(1, len(A)):
        insort_left(sorted_left, A[i-1])
        # i is also the length of sorted_left
        res += (i - bisect(sorted_left, A[i]))
    return res

# Slightly faster, except for very small lists
def solutionE_TimBabych(A):
    res = 0
    sorted_left = []
    for i, u in enumerate(A):
        # i is also the length of sorted_left
        res += (i - bisect(sorted_left, u))
        insort_left(sorted_left, u)
    return res

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
# Bisection based method by "python"
def solution_python(A):
    B = list(A)
    B.sort()
    inversion_count = 0
    for i in range(len(A)):
        j = binarySearch_python(B, A[i])
        while B[j] == B[j - 1]:
            if j < 1:
                break
            j -= 1
        inversion_count += j
        B.pop(j)
    return inversion_count

def binarySearch_python(alist, item):
    first = 0
    last = len(alist) - 1
    found = False
    while first <= last and not found:
        midpoint = (first + last) // 2
        if alist[midpoint] == item:
            return midpoint
        else:
            if item < alist[midpoint]:
                last = midpoint - 1
            else:
                first = midpoint + 1

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
# Merge sort version by Zhe Hu
def inv_cnt_ZheHu(a):
    _, count = inv_cnt(a.copy())
    return count

def inv_cnt(a):
    n = len(a)
    if n==1:
        return a, 0
    left = a[0:n//2] # should be smaller
    left, cnt1 = inv_cnt(left)
    right = a[n//2:] # should be larger
    right, cnt2 = inv_cnt(right)

    cnt = 0
    i_left = i_right = i_a = 0
    while i_a < n:
        if (i_right>=len(right)) or (i_left < len(left)
            and left[i_left] <= right[i_right]):
            a[i_a] = left[i_left]
            i_left += 1
        else:
            a[i_a] = right[i_right]
            i_right += 1
            if i_left < len(left):
                cnt += len(left) - i_left
        i_a += 1
    return (a, cnt1 + cnt2 + cnt)

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
# Merge sort version by noman pouigt
# From https://stackoverflow.com/q/47830098
def reversePairs_nomanpouigt(nums):
    def merge(left, right):
        if not left or not right:
            return (0, left + right)
        #if everything in left is less than right
        if left[len(left)-1] < right[0]:
            return (0, left + right)
        else:
            left_idx, right_idx, count = 0, 0, 0
            merged_output = []

            # check for condition before we merge it
            while left_idx < len(left) and right_idx < len(right):
                #if left[left_idx] > 2 * right[right_idx]:
                if left[left_idx] > right[right_idx]:
                    count += len(left) - left_idx
                    right_idx += 1
                else:
                    left_idx += 1

            #merging the sorted list
            left_idx, right_idx = 0, 0
            while left_idx < len(left) and right_idx < len(right):
                if left[left_idx] > right[right_idx]:
                    merged_output += [right[right_idx]]
                    right_idx += 1
                else:
                    merged_output += [left[left_idx]]
                    left_idx += 1
            if left_idx == len(left):
                merged_output += right[right_idx:]
            else:
                merged_output += left[left_idx:]
        return (count, merged_output)

    def partition(nums):
        count = 0
        if len(nums) == 1 or not nums:
            return (0, nums)
        pivot = len(nums)//2
        left_count, l = partition(nums[:pivot])
        right_count, r = partition(nums[pivot:])
        temp_count, temp_list = merge(l, r)
        return (temp_count + left_count + right_count, temp_list)
    return partition(nums)[0]

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
# PM 2Ring
def merge_PM2R(seq):
    seq, count = merge_sort_count_PM2R(seq)
    return count

def merge_sort_count_PM2R(seq):
    mid = len(seq) // 2
    if mid == 0:
        return seq, 0
    left, left_total = merge_sort_count_PM2R(seq[:mid])
    right, right_total = merge_sort_count_PM2R(seq[mid:])
    total = left_total + right_total
    result = []
    i = j = 0
    left_len, right_len = len(left), len(right)
    while i < left_len and j < right_len:
        if left[i] <= right[j]:
            result.append(left[i])
            i += 1
        else:
            result.append(right[j])
            j += 1
            total += left_len - i
    result.extend(left[i:])
    result.extend(right[j:])
    return result, total

def rank_sum_PM2R(a):
    total = 0
    counts = [0] * len(a)
    rank = {v: i for i, v in enumerate(sorted(a))}
    for u in reversed(a):
        i = rank[u]
        total += sum(counts[:i])
        counts[i] += 1
    return total

# Fenwick tree functions adapted from C code on Wikipedia
def fen_sum(tree, i):
    ''' Return the sum of the first i elements, 0 through i-1 '''
    total = 0
    while i:
        total += tree[i-1]
        i -= i & -i
    return total

def fen_add(tree, delta, i):
    ''' Add delta to element i and thus 
        to fen_sum(tree, j) for all j > i 
    '''
    size = len(tree)
    while i < size:
        tree[i] += delta
        i += (i+1) & -(i+1)

def fenwick_PM2R(a):
    total = 0
    counts = [0] * len(a)
    rank = {v: i for i, v in enumerate(sorted(a))}
    for u in reversed(a):
        i = rank[u]
        total += fen_sum(counts, i)
        fen_add(counts, 1, i)
    return total

def fenwick_inline_PM2R(a):
    total = 0
    size = len(a)
    counts = [0] * size
    rank = {v: i for i, v in enumerate(sorted(a))}
    for u in reversed(a):
        i = rank[u]
        j = i + 1
        while i:
            total += counts[i]
            i -= i & -i
        while j < size:
            counts[j] += 1
            j += j & -j
    return total

def bruteforce_loops_PM2R(a):
    total = 0
    for i in range(1, len(a)):
        u = a[i]
        for j in range(i):
            if a[j] > u:
                total += 1
    return total

def bruteforce_sum_PM2R(a):
    return sum(1 for i in range(1, len(a)) for j in range(i) if a[j] > a[i])

# Using binary tree counting, derived from C++ code (?) by prasadvk
# https://stackoverflow.com/a/16056139
def ltree_count_PM2R(a):
    total, root = 0, None
    for u in a:
        # Store data in a list-based tree structure
        # [data, count, left_child, right_child]
        p = [u, 0, None, None]
        if root is None:
            root = p
            continue
        q = root
        while True:
            if p[0] < q[0]:
                total += 1 + q[1]
                child = 2
            else:
                q[1] += 1
                child = 3
            if q[child]:
                q = q[child]
            else:
                q[child] = p
                break
    return total

# Counting based on radix sort, recursive version
def radix_partition_rec(a, L):
    if len(a) < 2:
        return 0
    if len(a) == 2:
        return a[1] < a[0]
    left, right = [], []
    count = 0
    for u in a:
        if u & L:
            right.append(u)
        else:
            count += len(right)
            left.append(u)
    L >>= 1
    if L:
        count += radix_partition_rec(left, L) + radix_partition_rec(right, L)
    return count

# The following functions determine swaps using a permutation of 
# range(len(a)) that has the same inversion count as `a`. We can create
# this permutation with `sorted(range(len(a)), key=lambda k: a[k])`
# but `sorted(range(len(a)), key=a.__getitem__)` is a little faster.

# Counting based on radix sort, iterative version
def radix_partition_iter(seq, L):
    count = 0
    parts = [seq]
    while L and parts:
        newparts = []
        for a in parts:
            if len(a) < 2:
                continue
            if len(a) == 2:
                count += a[1] < a[0]
                continue
            left, right = [], []
            for u in a:
                if u & L:
                    right.append(u)
                else:
                    count += len(right)
                    left.append(u)
            if left:
                newparts.append(left)
            if right:
                newparts.append(right)
        parts = newparts
        L >>= 1
    return count

def perm_radixR_PM2R(a):
    size = len(a)
    b = sorted(range(size), key=a.__getitem__)
    n = size.bit_length() - 1
    return radix_partition_rec(b, 1 << n)

def perm_radixI_PM2R(a):
    size = len(a)
    b = sorted(range(size), key=a.__getitem__)
    n = size.bit_length() - 1
    return radix_partition_iter(b, 1 << n)

# Plain sum of the counts of the permutation
def perm_sum_PM2R(a):
    total = 0
    size = len(a)
    counts = [0] * size
    for i in reversed(sorted(range(size), key=a.__getitem__)):
        total += sum(counts[:i])
        counts[i] = 1
    return total

# Fenwick sum of the counts of the permutation
def perm_fenwick_PM2R(a):
    total = 0
    size = len(a)
    counts = [0] * size
    for i in reversed(sorted(range(size), key=a.__getitem__)):
        j = i + 1
        while i:
            total += counts[i]
            i -= i & -i
        while j < size:
            counts[j] += 1
            j += j & -j
    return total

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# All the inversion-counting functions
funcs = (
    solution_TimBabych,
    solutionE_TimBabych,
    solution_python,
    count_inversion_mkso,
    count_inversions_NiklasB,
    merge_count_BM,
    inv_cnt_ZheHu,
    reversePairs_nomanpouigt,
    fenwick_PM2R,
    fenwick_inline_PM2R,
    merge_PM2R,
    rank_sum_PM2R,
    bruteforce_loops_PM2R,
    bruteforce_sum_PM2R,
    ltree_count_PM2R,
    perm_radixR_PM2R,
    perm_radixI_PM2R,
    perm_sum_PM2R,
    perm_fenwick_PM2R,
)

def time_test(seq, loops, verify=False):
    orig = seq
    timings = []
    for func in funcs:
        seq = orig.copy()
        value = func(seq) if verify else None
        t = Timer(lambda: func(seq))
        result = sorted(t.repeat(3, loops))
        timings.append((result, func.__name__, value))
        assert seq==orig, 'Sequence altered by {}!'.format(func.__name__)
    first = timings[0][-1]
    timings.sort()
    for result, name, value in timings:
        result = ', '.join([format(u, '.5f') for u in result])
        print('{:24} : {}'.format(name, result))

    if verify:
        # Check that all results are identical
        bad = ['%s: %d' % (name, value)
            for _, name, value in timings if value != first]
        if bad:
            print('ERROR. Value: {}, bad: {}'.format(first, ', '.join(bad)))
        else:
            print('Value: {}'.format(first))
    print()

#Run the tests
size, loops = 5, 1 << 12
verify = True
for _ in range(7):
    hi = size // 2
    print('Size = {}, hi = {}, {} loops'.format(size, hi, loops))
    seq = [randrange(hi) for _ in range(size)]
    time_test(seq, loops, verify)
    loops >>= 1
    size <<= 1

#size, loops = 640, 8
#verify = False
#for _ in range(5):
    #hi = size // 2
    #print('Size = {}, hi = {}, {} loops'.format(size, hi, loops))
    #seq = [randrange(hi) for _ in range(size)]
    #time_test(seq, loops, verify)
    #size <<= 1

#size, loops = 163840, 4
#verify = False
#for _ in range(3):
    #hi = size // 2
    #print('Size = {}, hi = {}, {} loops'.format(size, hi, loops))
    #seq = [randrange(hi) for _ in range(size)]
    #time_test(seq, loops, verify)
    #size <<= 1

Die Ausgabe finden Sie hier

7
PM 2Ring

Überprüfen Sie dies: http://www.cs.jhu.edu/~xfliu/600.363_F03/hw_solution/solution1.pdf

Ich hoffe, dass es Ihnen die richtige Antwort gibt.

  • 2-3 Inversionsteil (d)
  • Es ist Laufzeit ist O (nlogn)
5
Hafsa

Hier ist eine mögliche Lösung mit Variation des binären Baums. Es fügt jedem Baumknoten ein Feld mit dem Namen rightSubTreeSize hinzu. Fügen Sie die Nummer in der binären Struktur in der Reihenfolge ein, in der sie im Array erscheinen. Wenn number lhs des Knotens beträgt, wäre der Inversionszähler für dieses Element (1 + rightSubTreeSize). Da alle diese Elemente größer als das aktuelle Element sind, wären sie früher im Array erschienen. Wenn das Element auf rhs eines Knotens geht, erhöhen Sie einfach seine rightSubTreeSize. Nachfolgend ist der Code. 

Node { 
    int data;
    Node* left, *right;
    int rightSubTreeSize;

    Node(int data) { 
        rightSubTreeSize = 0;
    }   
};

Node* root = null;
int totCnt = 0;
for(i = 0; i < n; ++i) { 
    Node* p = new Node(a[i]);
    if(root == null) { 
        root = p;
        continue;
    } 

    Node* q = root;
    int curCnt = 0;
    while(q) { 
        if(p->data <= q->data) { 
            curCnt += 1 + q->rightSubTreeSize;
            if(q->left) { 
                q = q->left;
            } else { 
                q->left = p;
                break;
            }
        } else { 
            q->rightSubTreeSize++;
            if(q->right) { 
                q = q->right;
            } else { 
                q->right = p;
                break;
            }
        }
    }

    totCnt += curCnt;
  }
  return totCnt;
4
prasadvk
public static int mergeSort(int[] a, int p, int r)
{
    int countInversion = 0;
    if(p < r)
    {
        int q = (p + r)/2;
        countInversion = mergeSort(a, p, q);
        countInversion += mergeSort(a, q+1, r);
        countInversion += merge(a, p, q, r);
    }
    return countInversion;
}

public static int merge(int[] a, int p, int q, int r)
{
    //p=0, q=1, r=3
    int countingInversion = 0;
    int n1 = q-p+1;
    int n2 = r-q;
    int[] temp1 = new int[n1+1];
    int[] temp2 = new int[n2+1];
    for(int i=0; i<n1; i++) temp1[i] = a[p+i];
    for(int i=0; i<n2; i++) temp2[i] = a[q+1+i];

    temp1[n1] = Integer.MAX_VALUE;
    temp2[n2] = Integer.MAX_VALUE;
    int i = 0, j = 0;

    for(int k=p; k<=r; k++)
    {
        if(temp1[i] <= temp2[j])
        {
            a[k] = temp1[i];
            i++;
        }
        else
        {
            a[k] = temp2[j];
            j++;
            countingInversion=countingInversion+(n1-i); 
        }
    }
    return countingInversion;
}
public static void main(String[] args)
{
    int[] a = {1, 20, 6, 4, 5};
    int countInversion = mergeSort(a, 0, a.length-1);
    System.out.println(countInversion);
}
3
Trying

Hier ist eine C++ - Lösung

/**
*array sorting needed to verify if first arrays n'th element is greater than sencond arrays
*some element then all elements following n will do the same
*/
#include<stdio.h>
#include<iostream>
using namespace std;
int countInversions(int array[],int size);
int merge(int arr1[],int size1,int arr2[],int size2,int[]);
int main()
{
    int array[] = {2, 4, 1, 3, 5};
    int size = sizeof(array) / sizeof(array[0]);
    int x = countInversions(array,size);
    printf("number of inversions = %d",x);
}

int countInversions(int array[],int size)
{
    if(size > 1 )
    {
    int mid = size / 2;
    int count1 = countInversions(array,mid);
    int count2 = countInversions(array+mid,size-mid);
    int temp[size];
    int count3 = merge(array,mid,array+mid,size-mid,temp);
    for(int x =0;x<size ;x++)
    {
        array[x] = temp[x];
    }
    return count1 + count2 + count3;
    }else{
        return 0;
    }
}

int merge(int arr1[],int size1,int arr2[],int size2,int temp[])
{
    int count  = 0;
    int a = 0;
    int b = 0;
    int c = 0;
    while(a < size1 && b < size2)
    {
        if(arr1[a] < arr2[b])
        {
            temp[c] = arr1[a];
            c++;
            a++;
        }else{
            temp[c] = arr2[b];
            b++;
            c++;
            count = count + size1 -a;
        }
    }

    while(a < size1)
    {
        temp[c] = arr1[a];
        c++;a++;
    }

while(b < size2)
    {
        temp[c] = arr2[b];
        c++;b++;
    }

    return count;
}
2
Dheeraj Sachan

Da dies eine alte Frage ist, werde ich meine Antwort in C geben.

#include <stdio.h>

int count = 0;
int inversions(int a[], int len);
void mergesort(int a[], int left, int right);
void merge(int a[], int left, int mid, int right);

int main() {
  int a[] = { 1, 5, 2, 4, 0 };
  printf("%d\n", inversions(a, 5));
}

int inversions(int a[], int len) {
  mergesort(a, 0, len - 1);
  return count;
}

void mergesort(int a[], int left, int right) {
  if (left < right) {
     int mid = (left + right) / 2;
     mergesort(a, left, mid);
     mergesort(a, mid + 1, right);
     merge(a, left, mid, right);
  }
}

void merge(int a[], int left, int mid, int right) {
  int i = left;
  int j = mid + 1;
  int k = 0;
  int b[right - left + 1];
  while (i <= mid && j <= right) {
     if (a[i] <= a[j]) {
       b[k++] = a[i++];
     } else {
       printf("right element: %d\n", a[j]);
       count += (mid - i + 1);
       printf("new count: %d\n", count);
       b[k++] = a[j++];
     }
  }
  while (i <= mid)
    b[k++] = a[i++];
  while (j <= right)
    b[k++] = a[j++];
  for (i = left, k = 0; i <= right; i++, k++) {
    a[i] = b[k];
  }
}
2
mbreining

Eine weitere Python-Lösung, kurz. Verwendet das eingebaute Bisect-Modul, das Funktionen zum Einfügen eines Elements an seiner Stelle im sortierten Array und zum Suchen des Index des Elements im sortierten Array bereitstellt.

Die Idee ist, Elemente, die links vom n-ten liegen, in einem solchen Array zu speichern, wodurch wir leicht die Anzahl von ihnen finden können, die größer als n-ter ist.

import bisect
def solution(A):
    sorted_left = []
    res = 0
    for i in xrange(1, len(A)):
        bisect.insort_left(sorted_left, A[i-1])
        # i is also the length of sorted_left
        res += (i - bisect.bisect(sorted_left, A[i]))
    return res
1
Tim Babych

Nun, ich habe eine andere Lösung, aber ich befürchte, dass dies nur für bestimmte Array-Elemente funktionieren würde.

//Code
#include <bits/stdc++.h>
using namespace std;

int main()
{
    int i,n;
    cin >> n;
    int arr[n],inv[n];
    for(i=0;i<n;i++){
        cin >> arr[i];
    }
    vector<int> v;
    v.Push_back(arr[n-1]);
    inv[n-1]=0;
    for(i=n-2;i>=0;i--){
        auto it = lower_bound(v.begin(),v.end(),arr[i]); 
        //calculating least element in vector v which is greater than arr[i]
        inv[i]=it-v.begin();
        //calculating distance from starting of vector
        v.insert(it,arr[i]);
        //inserting that element into vector v
    }
    for(i=0;i<n;i++){
        cout << inv[i] << " ";
    }
    cout << endl;
    return 0;
}

Um meinen Code zu erklären, fügen wir weiterhin Elemente vom Ende des Arrays hinzu. Für jedes eingehende Array-Element finden wir den Index des ersten Elements im Vektor v, der größer ist als unser eingehendes Element und ordnen diesen Wert dem Inversionszähler der Index des eingehenden Elements. Danach fügen wir dieses Element an seiner korrekten Position in Vektor v ein, sodass Vektor v in sortierter Reihenfolge bleibt. 

//INPUT     
4
2 1 4 3

//OUTPUT    
1 0 1 0

//To calculate total inversion count just add up all the elements in output array
1
Varun Garg

Hier ist die Implementierung von O (n * log (n)) Perl:

sub sort_and_count {
    my ($arr, $n) = @_;
    return ($arr, 0) unless $n > 1;

    my $mid = $n % 2 == 1 ? ($n-1)/2 : $n/2;
    my @left = @$arr[0..$mid-1];
    my @right = @$arr[$mid..$n-1];

    my ($sleft, $x) = sort_and_count( \@left, $mid );
    my ($sright, $y) = sort_and_count( \@right, $n-$mid);
    my ($merged, $z) = merge_and_countsplitinv( $sleft, $sright, $n );

    return ($merged, $x+$y+$z);
}

sub merge_and_countsplitinv {
    my ($left, $right, $n) = @_;

    my ($l_c, $r_c) = ($#$left+1, $#$right+1);
    my ($i, $j) = (0, 0);
    my @merged;
    my $inv = 0;

    for my $k (0..$n-1) {
        if ($i<$l_c && $j<$r_c) {
            if ( $left->[$i] < $right->[$j]) {
                Push @merged, $left->[$i];
                $i+=1;
            } else {
                Push @merged, $right->[$j];
                $j+=1;
                $inv += $l_c - $i;
            }
        } else {
            if ($i>=$l_c) {
                Push @merged, @$right[ $j..$#$right ];
            } else {
                Push @merged, @$left[ $i..$#$left ];
            }
            last;
        }
    }

    return (\@merged, $inv);
}
1
Omid

Meine Antwort in Python:

1- Sortieren Sie zuerst das Array und erstellen Sie eine Kopie davon. In meinem Programm steht B für das sortierte Array . 2- Durchlaufen Sie das ursprüngliche Array (unsortiert) und suchen Sie den Index dieses Elements in der sortierten Liste. Notieren Sie sich auch den Index des Elements . 3- Stellen Sie sicher, dass das Element keine Duplikate enthält. Wenn dies der Fall ist, müssen Sie den Wert Ihres Index um -1 ändern. Die while-Bedingung in meinem Programm macht genau das. 4- Zählen Sie weiterhin die Inversion, die Ihren Indexwert ergibt, und entfernen Sie das Element, sobald Sie die Inversion berechnet haben. 

def binarySearch(alist, item):
    first = 0
    last = len(alist) - 1
    found = False

    while first <= last and not found:
        midpoint = (first + last)//2
        if alist[midpoint] == item:
            return midpoint
        else:
            if item < alist[midpoint]:
                last = midpoint - 1
            else:
                first = midpoint + 1

def solution(A):

    B = list(A)
    B.sort()
    inversion_count = 0
    for i in range(len(A)):
        j = binarySearch(B, A[i])
        while B[j] == B[j - 1]:
            if j < 1:
                break
            j -= 1

        inversion_count += j
        B.pop(j)

    if inversion_count > 1000000000:
        return -1
    else:
        return inversion_count

print solution([4, 10, 11, 1, 3, 9, 10])
1
python

O (n log n) Zeit, O(n) - Raumlösung in Java. 

Ein Mergesort mit einem Tweak, um die Anzahl der beim Merge-Schritt durchgeführten Umkehrungen zu erhalten. (Für ein gut erklärtes Mergesort besuchen Sie http://www.vogella.com/tutorials/JavaAlgorithmsMergesort/article.html )

Da ein Mergesort an Ort und Stelle gemacht werden kann, kann die Raumkomplexität auf O (1) verbessert werden.

Bei Verwendung dieser Art finden die Inversionen nur im Zusammenführungsschritt statt und nur, wenn wir ein Element des zweiten Teils vor Elementen aus der ersten Hälfte setzen müssen, z. 

  • 0 5 10 15

verschmolzen mit 

  • 1 6 22

wir haben 3 + 2 + 0 = 5 Inversionen: 

  • 1 mit {5, 10, 15} 
  • 6 mit {10, 15} 
  • 22 mit {}

Nachdem wir die 5 Inversionen durchgeführt haben, lautet unsere neue zusammengeführte Liste 0, 1, 5, 6, 10, 15, 22

Zu Codility gibt es eine Demo-Task namens ArrayInversionCount, in der Sie Ihre Lösung testen können.

    public class FindInversions {

    public static int solution(int[] input) {
        if (input == null)
            return 0;
        int[] helper = new int[input.length];
        return mergeSort(0, input.length - 1, input, helper);
    }

    public static int mergeSort(int low, int high, int[] input, int[] helper) {
        int inversionCount = 0;
        if (low < high) {
            int medium = low + (high - low) / 2;
            inversionCount += mergeSort(low, medium, input, helper);
            inversionCount += mergeSort(medium + 1, high, input, helper);
            inversionCount += merge(low, medium, high, input, helper);
        }
        return inversionCount;
    }

    public static int merge(int low, int medium, int high, int[] input, int[] helper) {
        int inversionCount = 0;

        for (int i = low; i <= high; i++)
            helper[i] = input[i];

        int i = low;
        int j = medium + 1;
        int k = low;

        while (i <= medium && j <= high) {
            if (helper[i] <= helper[j]) {
                input[k] = helper[i];
                i++;
            } else {
                input[k] = helper[j];
                // the number of elements in the first half which the j element needs to jump over.
                // there is an inversion between each of those elements and j.
                inversionCount += (medium + 1 - i);
                j++;
            }
            k++;
        }

        // finish writing back in the input the elements from the first part
        while (i <= medium) {
            input[k] = helper[i];
            i++;
            k++;
        }
        return inversionCount;
    }

}
1
Andrey Petrov

Hier ist ein C-Code für Count Inversions

#include <stdio.h>
#include <stdlib.h>

int  _mergeSort(int arr[], int temp[], int left, int right);
int merge(int arr[], int temp[], int left, int mid, int right);

/* This function sorts the input array and returns the
   number of inversions in the array */
int mergeSort(int arr[], int array_size)
{
    int *temp = (int *)malloc(sizeof(int)*array_size);
    return _mergeSort(arr, temp, 0, array_size - 1);
}

/* An auxiliary recursive function that sorts the input array and
  returns the number of inversions in the array. */
int _mergeSort(int arr[], int temp[], int left, int right)
{
  int mid, inv_count = 0;
  if (right > left)
  {
    /* Divide the array into two parts and call _mergeSortAndCountInv()
       for each of the parts */
    mid = (right + left)/2;

    /* Inversion count will be sum of inversions in left-part, right-part
      and number of inversions in merging */
    inv_count  = _mergeSort(arr, temp, left, mid);
    inv_count += _mergeSort(arr, temp, mid+1, right);

    /*Merge the two parts*/
    inv_count += merge(arr, temp, left, mid+1, right);
  }
  return inv_count;
}

/* This funt merges two sorted arrays and returns inversion count in
   the arrays.*/
int merge(int arr[], int temp[], int left, int mid, int right)
{
  int i, j, k;
  int inv_count = 0;

  i = left; /* i is index for left subarray*/
  j = mid;  /* i is index for right subarray*/
  k = left; /* i is index for resultant merged subarray*/
  while ((i <= mid - 1) && (j <= right))
  {
    if (arr[i] <= arr[j])
    {
      temp[k++] = arr[i++];
    }
    else
    {
      temp[k++] = arr[j++];

     /*this is tricky -- see above explanation/diagram for merge()*/
      inv_count = inv_count + (mid - i);
    }
  }

  /* Copy the remaining elements of left subarray
   (if there are any) to temp*/
  while (i <= mid - 1)
    temp[k++] = arr[i++];

  /* Copy the remaining elements of right subarray
   (if there are any) to temp*/
  while (j <= right)
    temp[k++] = arr[j++];

  /*Copy back the merged elements to original array*/
  for (i=left; i <= right; i++)
    arr[i] = temp[i];

  return inv_count;
}

/* Driver progra to test above functions */
int main(int argv, char** args)
{
  int arr[] = {1, 20, 6, 4, 5};
  printf(" Number of inversions are %d \n", mergeSort(arr, 5));
  getchar();
  return 0;
}

Eine ausführliche Erklärung wurde hier gegeben: http://www.geeksforgeeks.org/counting-inversions/

1
banarun

Die maximal mögliche Anzahl von Inversionen für eine Liste der Größen n kann durch einen Ausdruck verallgemeinert werden:

maxPossibleInversions = (n * (n-1) ) / 2

Für ein Array mit der Größe 6 entsprechen maximal mögliche Inversionen 15.

Um eine Komplexität von n logn zu erreichen, können wir den Inversionsalgorithmus beim Zusammenfügen sortieren.

Hier sind die allgemeinen Schritte:

  • Teilen Sie das Array in zwei Teile
  • Rufen Sie die Routine mergeSort auf. Wenn das Element im linken Subarray größer ist als das Element im rechten Subarray, machen Sie inversionCount += leftSubArray.length

Das ist es!

Dies ist ein einfaches Beispiel, das ich mit Javascript erstellt habe:

var arr = [6,5,4,3,2,1]; // Sample input array

var inversionCount = 0;

function mergeSort(arr) {
    if(arr.length == 1)
        return arr;

    if(arr.length > 1) {
        let breakpoint = Math.ceil((arr.length/2));
        // Left list starts with 0, breakpoint-1
        let leftList = arr.slice(0,breakpoint);
        // Right list starts with breakpoint, length-1
        let rightList = arr.slice(breakpoint,arr.length);

        // Make a recursive call
        leftList = mergeSort(leftList);
        rightList = mergeSort(rightList);

        var a = merge(leftList,rightList);
        return a;
    }
}

function merge(leftList,rightList) {
    let result = [];
    while(leftList.length && rightList.length) {
        /**
         * The shift() method removes the first element from an array
         * and returns that element. This method changes the length
         * of the array.
         */
        if(leftList[0] <= rightList[0]) {
            result.Push(leftList.shift());
        }else{
            inversionCount += leftList.length;
            result.Push(rightList.shift());
        }
    }

    while(leftList.length)
        result.Push(leftList.shift());

    while(rightList.length)
        result.Push(rightList.shift());

    console.log(result);
    return result;
}

mergeSort(arr);
console.log('Number of inversions: ' + inversionCount);
0
Suhail Gupta

Diese Antwort enthält die Ergebnisse der timeit-Tests, die vom Code in meiner main answer erstellt wurden. Bitte sehen Sie diese Antwort für Details!

count_inversions speed test results

Size = 5, hi = 2, 4096 loops
ltree_count_PM2R         : 0.04871, 0.04872, 0.04876
bruteforce_loops_PM2R    : 0.05696, 0.05700, 0.05776
solution_TimBabych       : 0.05760, 0.05822, 0.05943
solutionE_TimBabych      : 0.06642, 0.06704, 0.06760
bruteforce_sum_PM2R      : 0.07523, 0.07545, 0.07563
perm_sum_PM2R            : 0.09873, 0.09875, 0.09935
rank_sum_PM2R            : 0.10449, 0.10463, 0.10468
solution_python          : 0.13034, 0.13061, 0.13221
fenwick_inline_PM2R      : 0.14323, 0.14610, 0.18802
perm_radixR_PM2R         : 0.15146, 0.15203, 0.15235
merge_count_BM           : 0.16179, 0.16267, 0.16467
perm_radixI_PM2R         : 0.16200, 0.16202, 0.16768
perm_fenwick_PM2R        : 0.16887, 0.16920, 0.17075
merge_PM2R               : 0.18262, 0.18271, 0.18418
count_inversions_NiklasB : 0.19183, 0.19279, 0.20388
count_inversion_mkso     : 0.20060, 0.20141, 0.20398
inv_cnt_ZheHu            : 0.20815, 0.20841, 0.20906
fenwick_PM2R             : 0.22109, 0.22137, 0.22379
reversePairs_nomanpouigt : 0.29620, 0.29689, 0.30293
Value: 5

Size = 10, hi = 5, 2048 loops
solution_TimBabych       : 0.05954, 0.05989, 0.05991
solutionE_TimBabych      : 0.05970, 0.05972, 0.05998
perm_sum_PM2R            : 0.07517, 0.07519, 0.07520
ltree_count_PM2R         : 0.07672, 0.07677, 0.07684
bruteforce_loops_PM2R    : 0.07719, 0.07724, 0.07817
rank_sum_PM2R            : 0.08587, 0.08823, 0.08864
bruteforce_sum_PM2R      : 0.09470, 0.09472, 0.09484
solution_python          : 0.13126, 0.13154, 0.13185
perm_radixR_PM2R         : 0.14239, 0.14320, 0.14474
perm_radixI_PM2R         : 0.14632, 0.14669, 0.14679
fenwick_inline_PM2R      : 0.16796, 0.16831, 0.17030
perm_fenwick_PM2R        : 0.18189, 0.18212, 0.18638
merge_count_BM           : 0.19816, 0.19870, 0.19948
count_inversions_NiklasB : 0.21807, 0.22031, 0.22215
merge_PM2R               : 0.22037, 0.22048, 0.26106
fenwick_PM2R             : 0.24290, 0.24314, 0.24744
count_inversion_mkso     : 0.24895, 0.24899, 0.25205
inv_cnt_ZheHu            : 0.26253, 0.26259, 0.26590
reversePairs_nomanpouigt : 0.35711, 0.35762, 0.35973
Value: 20

Size = 20, hi = 10, 1024 loops
solutionE_TimBabych      : 0.05687, 0.05696, 0.05720
solution_TimBabych       : 0.06126, 0.06151, 0.06168
perm_sum_PM2R            : 0.06875, 0.06906, 0.07054
rank_sum_PM2R            : 0.07988, 0.07995, 0.08002
ltree_count_PM2R         : 0.11232, 0.11239, 0.11257
bruteforce_loops_PM2R    : 0.12553, 0.12584, 0.12592
solution_python          : 0.13472, 0.13540, 0.13694
bruteforce_sum_PM2R      : 0.15820, 0.15849, 0.16021
perm_radixI_PM2R         : 0.17101, 0.17148, 0.17229
perm_radixR_PM2R         : 0.17891, 0.18087, 0.18366
perm_fenwick_PM2R        : 0.20554, 0.20708, 0.21412
fenwick_inline_PM2R      : 0.21161, 0.21163, 0.22047
merge_count_BM           : 0.24125, 0.24261, 0.24565
count_inversions_NiklasB : 0.25712, 0.25754, 0.25778
merge_PM2R               : 0.26477, 0.26566, 0.31297
fenwick_PM2R             : 0.28178, 0.28216, 0.29069
count_inversion_mkso     : 0.30286, 0.30290, 0.30652
inv_cnt_ZheHu            : 0.32024, 0.32041, 0.32447
reversePairs_nomanpouigt : 0.45812, 0.45822, 0.46172
Value: 98

Size = 40, hi = 20, 512 loops
solutionE_TimBabych      : 0.05784, 0.05787, 0.05958
solution_TimBabych       : 0.06452, 0.06475, 0.06479
perm_sum_PM2R            : 0.07254, 0.07261, 0.07263
rank_sum_PM2R            : 0.08537, 0.08540, 0.08572
ltree_count_PM2R         : 0.11744, 0.11749, 0.11792
solution_python          : 0.14262, 0.14285, 0.14465
perm_radixI_PM2R         : 0.18774, 0.18776, 0.18922
perm_radixR_PM2R         : 0.19425, 0.19435, 0.19609
bruteforce_loops_PM2R    : 0.21500, 0.21511, 0.21686
perm_fenwick_PM2R        : 0.23338, 0.23375, 0.23674
fenwick_inline_PM2R      : 0.24947, 0.24958, 0.25189
bruteforce_sum_PM2R      : 0.27627, 0.27646, 0.28041
merge_count_BM           : 0.28059, 0.28128, 0.28294
count_inversions_NiklasB : 0.28557, 0.28759, 0.29022
merge_PM2R               : 0.29886, 0.29928, 0.30317
fenwick_PM2R             : 0.30241, 0.30259, 0.35237
count_inversion_mkso     : 0.34252, 0.34356, 0.34441
inv_cnt_ZheHu            : 0.37468, 0.37569, 0.37847
reversePairs_nomanpouigt : 0.50725, 0.50770, 0.50943
Value: 369

Size = 80, hi = 40, 256 loops
solutionE_TimBabych      : 0.06339, 0.06373, 0.06513
solution_TimBabych       : 0.06984, 0.06994, 0.07009
perm_sum_PM2R            : 0.09171, 0.09172, 0.09186
rank_sum_PM2R            : 0.10468, 0.10474, 0.10500
ltree_count_PM2R         : 0.14416, 0.15187, 0.18541
solution_python          : 0.17415, 0.17423, 0.17451
perm_radixI_PM2R         : 0.20676, 0.20681, 0.20936
perm_radixR_PM2R         : 0.21671, 0.21695, 0.21736
perm_fenwick_PM2R        : 0.26197, 0.26252, 0.26264
fenwick_inline_PM2R      : 0.28111, 0.28249, 0.28382
count_inversions_NiklasB : 0.31746, 0.32448, 0.32451
merge_count_BM           : 0.31964, 0.33842, 0.35276
merge_PM2R               : 0.32890, 0.32941, 0.33322
fenwick_PM2R             : 0.34355, 0.34377, 0.34873
count_inversion_mkso     : 0.37689, 0.37698, 0.38079
inv_cnt_ZheHu            : 0.42923, 0.42941, 0.43249
bruteforce_loops_PM2R    : 0.43544, 0.43601, 0.43902
bruteforce_sum_PM2R      : 0.52106, 0.52160, 0.52531
reversePairs_nomanpouigt : 0.57805, 0.58156, 0.58252
Value: 1467

Size = 160, hi = 80, 128 loops
solutionE_TimBabych      : 0.06766, 0.06784, 0.06963
solution_TimBabych       : 0.07433, 0.07489, 0.07516
perm_sum_PM2R            : 0.13143, 0.13175, 0.13179
rank_sum_PM2R            : 0.14428, 0.14440, 0.14922
solution_python          : 0.20072, 0.20076, 0.20084
ltree_count_PM2R         : 0.20314, 0.20583, 0.24776
perm_radixI_PM2R         : 0.23061, 0.23078, 0.23525
perm_radixR_PM2R         : 0.23894, 0.23915, 0.24234
perm_fenwick_PM2R        : 0.30984, 0.31181, 0.31503
fenwick_inline_PM2R      : 0.31933, 0.32680, 0.32722
merge_count_BM           : 0.36003, 0.36387, 0.36409
count_inversions_NiklasB : 0.36796, 0.36814, 0.37106
merge_PM2R               : 0.36847, 0.36848, 0.37127
fenwick_PM2R             : 0.37833, 0.37847, 0.38095
count_inversion_mkso     : 0.42746, 0.42747, 0.43184
inv_cnt_ZheHu            : 0.48969, 0.48974, 0.49293
reversePairs_nomanpouigt : 0.67791, 0.68157, 0.72420
bruteforce_loops_PM2R    : 0.82816, 0.83175, 0.83282
bruteforce_sum_PM2R      : 1.03322, 1.03378, 1.03562
Value: 6194

Size = 320, hi = 160, 64 loops
solutionE_TimBabych      : 0.07467, 0.07470, 0.07483
solution_TimBabych       : 0.08036, 0.08066, 0.08077
perm_sum_PM2R            : 0.21142, 0.21201, 0.25766
solution_python          : 0.22410, 0.22644, 0.22897
rank_sum_PM2R            : 0.22820, 0.22851, 0.22877
ltree_count_PM2R         : 0.24424, 0.24595, 0.24645
perm_radixI_PM2R         : 0.25690, 0.25710, 0.26191
perm_radixR_PM2R         : 0.26501, 0.26504, 0.26729
perm_fenwick_PM2R        : 0.33483, 0.33507, 0.33845
fenwick_inline_PM2R      : 0.34413, 0.34484, 0.35153
merge_count_BM           : 0.39875, 0.39919, 0.40302
fenwick_PM2R             : 0.40434, 0.40439, 0.40845
merge_PM2R               : 0.40814, 0.41531, 0.51417
count_inversions_NiklasB : 0.41681, 0.42009, 0.42128
count_inversion_mkso     : 0.47132, 0.47192, 0.47385
inv_cnt_ZheHu            : 0.54468, 0.54750, 0.54893
reversePairs_nomanpouigt : 0.76164, 0.76389, 0.80357
bruteforce_loops_PM2R    : 1.59125, 1.60430, 1.64131
bruteforce_sum_PM2R      : 2.03734, 2.03834, 2.03975
Value: 24959

Run 2

Size = 640, hi = 320, 8 loops
solutionE_TimBabych      : 0.04135, 0.04374, 0.04575
ltree_count_PM2R         : 0.06738, 0.06758, 0.06874
perm_radixI_PM2R         : 0.06928, 0.06943, 0.07019
fenwick_inline_PM2R      : 0.07850, 0.07856, 0.08059
perm_fenwick_PM2R        : 0.08151, 0.08162, 0.08170
perm_sum_PM2R            : 0.09122, 0.09133, 0.09221
rank_sum_PM2R            : 0.09549, 0.09603, 0.11270
merge_count_BM           : 0.10733, 0.10807, 0.11032
count_inversions_NiklasB : 0.12460, 0.19865, 0.20205
solution_python          : 0.13514, 0.13585, 0.13814

Size = 1280, hi = 640, 8 loops
solutionE_TimBabych      : 0.04714, 0.04742, 0.04752
perm_radixI_PM2R         : 0.15325, 0.15388, 0.15525
solution_python          : 0.15709, 0.15715, 0.16076
fenwick_inline_PM2R      : 0.16048, 0.16160, 0.16403
ltree_count_PM2R         : 0.16213, 0.16238, 0.16428
perm_fenwick_PM2R        : 0.16408, 0.16416, 0.16449
count_inversions_NiklasB : 0.19755, 0.19833, 0.19897
merge_count_BM           : 0.23736, 0.23793, 0.23912
perm_sum_PM2R            : 0.32946, 0.32969, 0.33277
rank_sum_PM2R            : 0.34637, 0.34756, 0.34858

Size = 2560, hi = 1280, 8 loops
solutionE_TimBabych      : 0.10898, 0.11005, 0.11025
perm_radixI_PM2R         : 0.33345, 0.33352, 0.37656
ltree_count_PM2R         : 0.34670, 0.34786, 0.34833
perm_fenwick_PM2R        : 0.34816, 0.34879, 0.35214
fenwick_inline_PM2R      : 0.36196, 0.36455, 0.36741
solution_python          : 0.36498, 0.36637, 0.40887
count_inversions_NiklasB : 0.42274, 0.42745, 0.42995
merge_count_BM           : 0.50799, 0.50898, 0.50917
perm_sum_PM2R            : 1.27773, 1.27897, 1.27951
rank_sum_PM2R            : 1.29728, 1.30389, 1.30448

Size = 5120, hi = 2560, 8 loops
solutionE_TimBabych      : 0.26914, 0.26993, 0.27253
perm_radixI_PM2R         : 0.71416, 0.71634, 0.71753
perm_fenwick_PM2R        : 0.71976, 0.72078, 0.72078
fenwick_inline_PM2R      : 0.72776, 0.72804, 0.73143
ltree_count_PM2R         : 0.81972, 0.82043, 0.82290
solution_python          : 0.83714, 0.83756, 0.83962
count_inversions_NiklasB : 0.87282, 0.87395, 0.92087
merge_count_BM           : 1.09496, 1.09584, 1.10207
rank_sum_PM2R            : 5.02564, 5.06277, 5.06666
perm_sum_PM2R            : 5.09088, 5.12999, 5.13512

Size = 10240, hi = 5120, 8 loops
solutionE_TimBabych      : 0.71556, 0.71718, 0.72201
perm_radixI_PM2R         : 1.54785, 1.55096, 1.55515
perm_fenwick_PM2R        : 1.55103, 1.55353, 1.59298
fenwick_inline_PM2R      : 1.57118, 1.57240, 1.57271
ltree_count_PM2R         : 1.76240, 1.76247, 1.80944
count_inversions_NiklasB : 1.86543, 1.86851, 1.87208
solution_python          : 2.01490, 2.01519, 2.06423
merge_count_BM           : 2.35215, 2.35301, 2.40023
rank_sum_PM2R            : 20.07048, 20.08399, 20.13200
perm_sum_PM2R            : 20.10187, 20.12551, 20.12683

Run 3
Size = 20480, hi = 10240, 4 loops
solutionE_TimBabych      : 1.07636, 1.08243, 1.09569
perm_radixI_PM2R         : 1.59579, 1.60519, 1.61785
perm_fenwick_PM2R        : 1.66885, 1.68549, 1.71109
fenwick_inline_PM2R      : 1.72073, 1.72752, 1.77217
ltree_count_PM2R         : 1.96900, 1.97820, 2.02578
count_inversions_NiklasB : 2.03257, 2.05005, 2.18548
merge_count_BM           : 2.46768, 2.47377, 2.52133
solution_python          : 2.49833, 2.50179, 3.79819

Size = 40960, hi = 20480, 4 loops
solutionE_TimBabych      : 3.51733, 3.52008, 3.56996
perm_radixI_PM2R         : 3.51736, 3.52365, 3.56459
perm_fenwick_PM2R        : 3.76097, 3.80900, 3.87974
fenwick_inline_PM2R      : 3.95099, 3.96300, 3.99748
ltree_count_PM2R         : 4.49866, 4.54652, 5.39716
count_inversions_NiklasB : 4.61851, 4.64303, 4.73026
merge_count_BM           : 5.31945, 5.35378, 5.35951
solution_python          : 6.78756, 6.82911, 6.98217

Size = 81920, hi = 40960, 4 loops
perm_radixI_PM2R         : 7.68723, 7.71986, 7.72135
perm_fenwick_PM2R        : 8.52404, 8.53349, 8.53710
fenwick_inline_PM2R      : 8.97082, 8.97561, 8.98347
ltree_count_PM2R         : 10.01142, 10.01426, 10.03216
count_inversions_NiklasB : 10.60807, 10.62424, 10.70425
merge_count_BM           : 11.42149, 11.42342, 11.47003
solutionE_TimBabych      : 12.83390, 12.83485, 12.89747
solution_python          : 19.66092, 19.67067, 20.72204

Size = 163840, hi = 81920, 4 loops
perm_radixI_PM2R         : 17.14153, 17.16885, 17.22240
perm_fenwick_PM2R        : 19.25944, 19.27844, 20.27568
fenwick_inline_PM2R      : 19.78221, 19.80219, 19.80766
ltree_count_PM2R         : 22.42240, 22.43259, 22.48837
count_inversions_NiklasB : 22.97341, 23.01516, 23.98052
merge_count_BM           : 24.42683, 24.48559, 24.51488
solutionE_TimBabych      : 60.96006, 61.20145, 63.71835
solution_python          : 73.75132, 73.79854, 73.95874

Size = 327680, hi = 163840, 4 loops
perm_radixI_PM2R         : 36.56715, 36.60221, 37.05071
perm_fenwick_PM2R        : 42.21616, 42.21838, 42.26053
fenwick_inline_PM2R      : 43.04987, 43.09075, 43.13287
ltree_count_PM2R         : 49.87400, 50.08509, 50.69292
count_inversions_NiklasB : 50.74591, 50.75012, 50.75551
merge_count_BM           : 52.37284, 52.51491, 53.43003
solutionE_TimBabych      : 373.67198, 377.03341, 377.42360
solution_python          : 411.69178, 411.92691, 412.83856

Size = 655360, hi = 327680, 4 loops
perm_radixI_PM2R         : 78.51927, 78.66327, 79.46325
perm_fenwick_PM2R        : 90.64711, 90.80328, 91.76126
fenwick_inline_PM2R      : 93.32482, 93.39086, 94.28880
count_inversions_NiklasB : 107.74393, 107.80036, 108.71443
ltree_count_PM2R         : 109.11328, 109.23592, 110.18247
merge_count_BM           : 111.05633, 111.07840, 112.05861
solutionE_TimBabych      : 1830.46443, 1836.39960, 1849.53918
solution_python          : 1911.03692, 1912.04484, 1914.69786
0
PM 2Ring

Die einfache Antwort von O (n ^ 2) besteht darin, verschachtelte for-Schleifen zu verwenden und einen Zähler für jede Inversion zu erhöhen

int counter = 0;

for(int i = 0; i < n - 1; i++)
{
    for(int j = i+1; j < n; j++)
    {
        if( A[i] > A[j] )
        {
            counter++;
        }
    }
}

return counter;

Ich nehme an, Sie wollen eine effizientere Lösung, ich werde darüber nachdenken.

0
mbillard

Hier ist meine O (n log n) -Lösung in Ruby:

def solution(t)
    sorted, inversion_count = sort_inversion_count(t)
    return inversion_count
end

def sort_inversion_count(t)
    midpoint = t.length / 2
    left_half = t[0...midpoint]
    right_half = t[midpoint..t.length]

    if midpoint == 0
        return t, 0
    end

    sorted_left_half, left_half_inversion_count = sort_inversion_count(left_half)
    sorted_right_half, right_half_inversion_count = sort_inversion_count(right_half)

    sorted = []
    inversion_count = 0
    while sorted_left_half.length > 0 or sorted_right_half.length > 0
        if sorted_left_half.empty?
            sorted.Push sorted_right_half.shift
        elsif sorted_right_half.empty?
            sorted.Push sorted_left_half.shift
        else
            if sorted_left_half[0] > sorted_right_half[0]
                inversion_count += sorted_left_half.length
                sorted.Push sorted_right_half.shift
            else
                sorted.Push sorted_left_half.shift
            end
        end
    end

    return sorted, inversion_count + left_half_inversion_count + right_half_inversion_count
end

Und einige Testfälle:

require "minitest/autorun"

class TestCodility < Minitest::Test
    def test_given_example
        a = [-1, 6, 3, 4, 7, 4]
        assert_equal solution(a), 4
    end

    def test_empty
        a = []
        assert_equal solution(a), 0
    end

    def test_singleton
        a = [0]
        assert_equal solution(a), 0
    end

    def test_none
        a = [1,2,3,4,5,6,7]
        assert_equal solution(a), 0
    end

    def test_all
        a = [5,4,3,2,1]
        assert_equal solution(a), 10
    end

    def test_clones
        a = [4,4,4,4,4,4]
        assert_equal solution(a), 0
    end
end
0
Brandon

Der beste optimierte Weg wird sein, ihn durch die Zusammenführungssortierung zu lösen, bei der wir uns selbst zusammenführen, um zu prüfen, wie viele Inversionen erforderlich sind, indem das linke und das rechte Feld verglichen werden. Wenn das Element im linken Feld größer als das Element im rechten Feld ist, wird es invertiert. 

Sortiermethode zusammenführen: -

Hier ist der Code. Code ist genau gleich wie Zusammenführungssortierung mit Ausnahme des Code-Snippets unter der mergeToParent-Methode, bei der ich die Umkehrung unter anderen Bedingungen von (left[leftunPicked] < right[rightunPicked]) zähle.

public class TestInversionThruMergeSort {

    static int count =0;

    public static void main(String[] args) {
        int[] arr = {6, 9, 1, 14, 8, 12, 3, 2};


        partition(arr);

        for (int i = 0; i < arr.length; i++) {

            System.out.println(arr[i]);
        }

        System.out.println("inversions are "+count);

    }

    public static void partition(int[] arr) {

        if (arr.length > 1) {

            int mid = (arr.length) / 2;
            int[] left = null;

            if (mid > 0) {
                left = new int[mid];

                for (int i = 0; i < mid; i++) {
                    left[i] = arr[i];
                }
            }

            int[] right = new int[arr.length - left.length];

            if ((arr.length - left.length) > 0) {
                int j = 0;
                for (int i = mid; i < arr.length; i++) {
                    right[j] = arr[i];
                    ++j;
                }
            }

            partition(left);
            partition(right);
            mergeToParent(left, right, arr);
        }

    }

    public static void mergeToParent(int[] left, int[] right, int[] parent) {

        int leftunPicked = 0;
        int rightunPicked = 0;
        int parentIndex = -1;

        while (rightunPicked < right.length && leftunPicked < left.length) {

            if (left[leftunPicked] < right[rightunPicked]) {
                parent[++parentIndex] = left[leftunPicked];
                ++leftunPicked;

            } else {
                count = count + left.length-leftunPicked;
                if ((rightunPicked < right.length)) {
                    parent[++parentIndex] = right[rightunPicked];
                    ++rightunPicked;
                }
            }

        }

        while (leftunPicked < left.length) {
            parent[++parentIndex] = left[leftunPicked];
            ++leftunPicked;
        }

        while (rightunPicked < right.length) {
            parent[++parentIndex] = right[rightunPicked];
            ++rightunPicked;
        }

    }

}

Ein weiterer Ansatz, bei dem wir das Eingangsarray mit einem sortierten Array vergleichen können: - Diese Implementierung der Diablo-Antwort. Dies sollte jedoch nicht bevorzugt werden, da das Entfernen der n Elemente aus einem Array oder einer Liste log (n ^ 2) ist.

import Java.util.ArrayList;
import Java.util.Arrays;
import Java.util.Collections;
import Java.util.Iterator;
import Java.util.List;


public class TestInversion {

    public static void main(String[] args) {

        Integer [] arr1 = {6, 9, 1, 14, 8, 12, 3, 2};

        List<Integer> arr = new ArrayList(Arrays.asList(arr1));
        List<Integer> sortArr = new ArrayList<Integer>();

        for(int i=0;i<arr.size();i++){
            sortArr.add(arr.get(i));

        }


        Collections.sort(sortArr);

        int inversion = 0;

        Iterator<Integer> iter = arr.iterator();

        while(iter.hasNext()){

            Integer el = (Integer)iter.next();
            int index = sortArr.indexOf(el);

            if(index+1 > 1){
                inversion = inversion + ((index+1)-1);
            }

            //iter.remove();
            sortArr.remove(el);

        }

        System.out.println("Inversions are "+inversion);




    }


}
0
M Sach

Eine mögliche Lösung in C++, die die Anforderung an die O (N * log (N)) - Zeitkomplexität erfüllt, wäre folgende.

#include <algorithm>

vector<int> merge(vector<int>left, vector<int>right, int &counter)
{

    vector<int> result;

    vector<int>::iterator it_l=left.begin();
    vector<int>::iterator it_r=right.begin();

    int index_left=0;

    while(it_l!=left.end() || it_r!=right.end())
    {

        // the following is true if we are finished with the left vector 
        // OR if the value in the right vector is the smaller one.

        if(it_l==left.end() || (it_r!=right.end() && *it_r<*it_l) )
        {
            result.Push_back(*it_r);
            it_r++;

            // increase inversion counter
            counter+=left.size()-index_left;
        }
        else
        {
            result.Push_back(*it_l);
            it_l++;
            index_left++;

        }
    }

    return result;
}

vector<int> merge_sort_and_count(vector<int> A, int &counter)
{

    int N=A.size();
    if(N==1)return A;

    vector<int> left(A.begin(),A.begin()+N/2);
    vector<int> right(A.begin()+N/2,A.end());

    left=merge_sort_and_count(left,counter);
    right=merge_sort_and_count(right,counter);


    return merge(left, right, counter);

}

Es unterscheidet sich von einer regulären Sortierreihenfolge nur durch den Zähler.

0
oo_miguel

Implementierung von Zählumkehrungen in einem Array mit Zusammenführungssortierung in Swift:

Beachten Sie, dass die Anzahl der Swaps um erhöht wird 

nSwaps += mid + 1 - iL 

(Dies ist die relative Länge der linken Seite des Arrays minus dem Index des aktuellen Elements auf der linken Seite.) 

... weil dies die Anzahl der Elemente ist, die das Element auf der rechten Seite des Arrays überspringen musste (# Umkehrungen), um sortiert zu werden.

func merge(arr: inout [Int], arr2: inout [Int], low: Int, mid: Int, high: Int) -> Int {
    var nSwaps = 0;

    var i = low;
    var iL = low;
    var iR = mid + 1;

    while iL <= mid && iR <= high {
        if arr2[iL] <= arr2[iR] {
            arr[i] = arr2[iL]
            iL += 1
            i += 1
        } else {
            arr[i] = arr2[iR]
            nSwaps += mid + 1 - iL
            iR += 1
            i += 1
        }
    }

    while iL <= mid {
        arr[i] = arr2[iL]
        iL += 1
        i += 1
    }

    while iR <= high {
        arr[i] = arr2[iR]
        iR += 1
        i += 1
    }

    return nSwaps
}

func mergeSort(arr: inout [Int]) -> Int {
    var arr2 = arr
    let nSwaps = mergeSort(arr: &arr, arr2: &arr2, low: 0, high: arr.count-1)
    return nSwaps
}

func mergeSort(arr: inout [Int], arr2: inout [Int], low: Int, high: Int) -> Int {

    if low >= high {
        return 0
    }

    let mid = low + ((high - low) / 2)

    var nSwaps = 0;
    nSwaps += mergeSort(arr: &arr2, arr2: &arr, low: low, high: mid)
    nSwaps += mergeSort(arr: &arr2, arr2: &arr, low: mid+1, high: high)
    nSwaps += merge(arr: &arr, arr2: &arr2, low: low, mid: mid, high: high)

    return nSwaps
}

var arrayToSort: [Int] = [2, 1, 3, 1, 2]
let nSwaps = mergeSort(arr: &arrayToSort)

print(arrayToSort) // [1, 1, 2, 2, 3]
print(nSwaps) // 4
0
davejlin