it-swarm.com.de

Finden aller möglichen Zahlenkombinationen, um eine bestimmte Summe zu erreichen

Wie würden Sie vorgehen, um alle möglichen Kombinationen von Hinzufügungen aus einem gegebenen Satz von Zahlen zu testen, damit sie sich zu einer gegebenen endgültigen Zahl summieren?

Beispiel:

  • Menge der hinzuzufügenden Zahlen: {1,5,22,15,0, ...}
  • Gewünschtes Ergebnis: 12345
201
James P.

Dieses Problem kann durch eine rekursive Kombination aller möglichen Summen gelöst werden, wobei diejenigen herausgefiltert werden, die das Ziel erreichen. Hier ist der Algorithmus in Python:

def subset_sum(numbers, target, partial=[]):
    s = sum(partial)

    # check if the partial sum is equals to target
    if s == target: 
        print "sum(%s)=%s" % (partial, target)
    if s >= target:
        return  # if we reach the number why bother to continue

    for i in range(len(numbers)):
        n = numbers[i]
        remaining = numbers[i+1:]
        subset_sum(remaining, target, partial + [n]) 


if __== "__main__":
    subset_sum([3,9,8,4,5,7,10],15)

    #Outputs:
    #sum([3, 8, 4])=15
    #sum([3, 5, 7])=15
    #sum([8, 7])=15
    #sum([5, 10])=15

Diese Art von Algorithmen wird im Folgenden sehr gut erklärt Standfords Abstract Programming Lecture - Dieses Video ist sehr empfehlenswert, um zu verstehen, wie Rekursion funktioniert, um Permutationen von Lösungen zu generieren.

Bearbeiten

Das obige als Generatorfunktion, was es ein bisschen nützlicher macht. Benötigt Python 3.3+ wegen yield from.

def subset_sum(numbers, target, partial=[], partial_sum=0):
    if partial_sum == target:
        yield partial
    if partial_sum >= target:
        return
    for i, n in enumerate(numbers):
        remaining = numbers[i + 1:]
        yield from subset_sum(remaining, target, partial + [n], partial_sum + n)

Hier ist die Java Version desselben Algorithmus:

package tmp;

import Java.util.ArrayList;
import Java.util.Arrays;

class SumSet {
    static void sum_up_recursive(ArrayList<Integer> numbers, int target, ArrayList<Integer> partial) {
       int s = 0;
       for (int x: partial) s += x;
       if (s == target)
            System.out.println("sum("+Arrays.toString(partial.toArray())+")="+target);
       if (s >= target)
            return;
       for(int i=0;i<numbers.size();i++) {
             ArrayList<Integer> remaining = new ArrayList<Integer>();
             int n = numbers.get(i);
             for (int j=i+1; j<numbers.size();j++) remaining.add(numbers.get(j));
             ArrayList<Integer> partial_rec = new ArrayList<Integer>(partial);
             partial_rec.add(n);
             sum_up_recursive(remaining,target,partial_rec);
       }
    }
    static void sum_up(ArrayList<Integer> numbers, int target) {
        sum_up_recursive(numbers,target,new ArrayList<Integer>());
    }
    public static void main(String args[]) {
        Integer[] numbers = {3,9,8,4,5,7,10};
        int target = 15;
        sum_up(new ArrayList<Integer>(Arrays.asList(numbers)),target);
    }
}

Es ist genau die gleiche Heuristik. Mein Java ist ein bisschen rostig, aber ich denke, es ist leicht zu verstehen.

C # -Konvertierung von Java Lösung: (von @JeremyThompson)

public static void Main(string[] args)
{
    List<int> numbers = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
    int target = 15;
    sum_up(numbers, target);
}

private static void sum_up(List<int> numbers, int target)
{
    sum_up_recursive(numbers, target, new List<int>());
}

private static void sum_up_recursive(List<int> numbers, int target, List<int> partial)
{
    int s = 0;
    foreach (int x in partial) s += x;

    if (s == target)
        Console.WriteLine("sum(" + string.Join(",", partial.ToArray()) + ")=" + target);

    if (s >= target)
        return;

    for (int i = 0; i < numbers.Count; i++)
    {
        List<int> remaining = new List<int>();
        int n = numbers[i];
        for (int j = i + 1; j < numbers.Count; j++) remaining.Add(numbers[j]);

        List<int> partial_rec = new List<int>(partial);
        partial_rec.Add(n);
        sum_up_recursive(remaining, target, partial_rec);
    }
}

Rubinlösung: (von @emaillenin)

def subset_sum(numbers, target, partial=[])
  s = partial.inject 0, :+
# check if the partial sum is equals to target

  puts "sum(#{partial})=#{target}" if s == target

  return if s >= target # if we reach the number why bother to continue

  (0..(numbers.length - 1)).each do |i|
    n = numbers[i]
    remaining = numbers.drop(i+1)
    subset_sum(remaining, target, partial + [n])
  end
end

subset_sum([3,9,8,4,5,7,10],15)

Bearbeiten: Komplexitätsdiskussion

Wie andere erwähnen, ist dies ein NP-hartes Problem . Es kann in der Exponentialzeit O (2 ^ n) gelöst werden, zum Beispiel gibt es für n = 10 1024 mögliche Lösungen. Wenn sich die Ziele, die Sie erreichen möchten, in einem niedrigen Bereich befinden, funktioniert dieser Algorithmus. Also zum Beispiel:

subset_sum([1,2,3,4,5,6,7,8,9,10],100000) generiert 1024 Verzweigungen, da das Ziel mögliche Lösungen niemals herausfiltern kann.

Andererseits erzeugt subset_sum([1,2,3,4,5,6,7,8,9,10],10) nur 175 Zweige, weil das Ziel, das erreicht werden soll 10, Viele Kombinationen herausfiltern kann.

Wenn N und Target große Zahlen sind, sollte eine ungefähre Version der Lösung verwendet werden.

215

In Haskell :

filter ((==) 12345 . sum) $ subsequences [1,5,22,15,0,..]

Und J :

(]#~12345=+/@>)(]<@#~[:#:@i.2^#)1 5 22 15 0 ...

Wie Sie vielleicht bemerken, gehen beide gleich vor und teilen das Problem in zwei Teile: Generieren Sie jedes Mitglied des Potenzsatzes und überprüfen Sie die Summe jedes Mitglieds zum Ziel.

Es gibt andere Lösungen, aber dies ist die einfachste.

Benötigen Sie Hilfe bei einem oder bei der Suche nach einem anderen Ansatz?

31
ephemient

Die Lösung dieses Problems wurde im Internet millionenfach angegeben. Das Problem heißt Das Münzwechselproblem . Lösungen finden Sie unter http://rosettacode.org/wiki/Count_the_coins und das mathematische Modell unter http://jaqm.ro/issues/volume-5,issue-2) /pdfs/patterson_harmel.pdf (oder Google Coin Change Problem ).

Übrigens ist die Scala= Lösung von Tsagadai interessant. Dieses Beispiel erzeugt entweder 1 oder 0. Als Nebeneffekt listet es auf der Konsole alle möglichen Lösungen auf. Es zeigt die Lösung an, aber macht es in keiner Weise nutzbar.

Um so nützlich wie möglich zu sein, sollte der Code einen List[List[Int]] Zurückgeben, um die Nummer der Lösung (Länge der Liste der Listen), die "beste" Lösung (die kürzeste Liste) oder alle zu erhalten mögliche Lösungen.

Hier ist ein Beispiel. Es ist sehr ineffizient, aber leicht zu verstehen.

object Sum extends App {

  def sumCombinations(total: Int, numbers: List[Int]): List[List[Int]] = {

    def add(x: (Int, List[List[Int]]), y: (Int, List[List[Int]])): (Int, List[List[Int]]) = {
      (x._1 + y._1, x._2 ::: y._2)
    }

    def sumCombinations(resultAcc: List[List[Int]], sumAcc: List[Int], total: Int, numbers: List[Int]): (Int, List[List[Int]]) = {
      if (numbers.isEmpty || total < 0) {
        (0, resultAcc)
      } else if (total == 0) {
        (1, sumAcc :: resultAcc)
      } else {
        add(sumCombinations(resultAcc, sumAcc, total, numbers.tail), sumCombinations(resultAcc, numbers.head :: sumAcc, total - numbers.head, numbers))
      }
    }

    sumCombinations(Nil, Nil, total, numbers.sortWith(_ > _))._2
  }

  println(sumCombinations(15, List(1, 2, 5, 10)) mkString "\n")
}

Beim Ausführen wird Folgendes angezeigt:

List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2)
List(1, 1, 1, 1, 1, 2, 2, 2, 2, 2)
List(1, 1, 1, 2, 2, 2, 2, 2, 2)
List(1, 2, 2, 2, 2, 2, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5)
List(1, 1, 1, 1, 1, 1, 1, 1, 2, 5)
List(1, 1, 1, 1, 1, 1, 2, 2, 5)
List(1, 1, 1, 1, 2, 2, 2, 5)
List(1, 1, 2, 2, 2, 2, 5)
List(2, 2, 2, 2, 2, 5)
List(1, 1, 1, 1, 1, 5, 5)
List(1, 1, 1, 2, 5, 5)
List(1, 2, 2, 5, 5)
List(5, 5, 5)
List(1, 1, 1, 1, 1, 10)
List(1, 1, 1, 2, 10)
List(1, 2, 2, 10)
List(5, 10)

Die Funktion sumCombinations() kann für sich allein verwendet werden, und das Ergebnis kann weiter analysiert werden, um die "beste" Lösung (die kürzeste Liste) oder die Anzahl der Lösungen (die Anzahl der Listen) anzuzeigen.

Beachten Sie, dass auch auf diese Weise die Anforderungen möglicherweise nicht vollständig erfüllt werden. Es kann vorkommen, dass die Reihenfolge jeder Liste in der Lösung signifikant ist. In einem solchen Fall müsste jede Liste so oft dupliziert werden, wie es eine Kombination ihrer Elemente gibt. Oder wir interessieren uns nur für die Kombinationen, die unterschiedlich sind.

Beispielsweise könnten wir annehmen, dass List(5, 10) zwei Kombinationen ergeben sollte: List(5, 10) und List(10, 5). Für List(5, 5, 5) kann es je nach Anforderung drei oder nur eine Kombination geben. Für ganze Zahlen sind die drei Permutationen gleichwertig, aber wenn es sich um Münzen handelt, wie im "Problem des Münzenwechsels", sind sie es nicht.

Ebenfalls nicht in den Anforderungen festgelegt ist die Frage, ob jede Zahl (oder Münze) nur einmal oder mehrmals verwendet werden darf. Wir könnten (und sollten!) Das Problem auf eine Liste von Vorkommenslisten für jede Zahl verallgemeinern. Dies bedeutet im wirklichen Leben, "wie man mit einem Satz Münzen (und nicht mit einem Satz Münzenwerten) einen bestimmten Geldbetrag verdienen kann". Das ursprüngliche Problem ist nur ein spezieller Fall dieses Falles, bei dem wir von jeder Münze so viele Vorkommen haben, wie erforderlich sind, um den Gesamtbetrag mit jedem einzelnen Münzwert zu bilden.

30

Eine Javascript-Version:

function subsetSum(numbers, target, partial) {
  var s, n, remaining;

  partial = partial || [];

  // sum partial
  s = partial.reduce(function (a, b) {
    return a + b;
  }, 0);

  // check if the partial sum is equals to target
  if (s === target) {
    console.log("%s=%s", partial.join("+"), target)
  }

  if (s >= target) {
    return;  // if we reach the number why bother to continue
  }

  for (var i = 0; i < numbers.length; i++) {
    n = numbers[i];
    remaining = numbers.slice(i + 1);
    subsetSum(remaining, target, partial.concat([n]));
  }
}

subsetSum([3,9,8,4,5,7,10],15);

// output:
// 3+8+4=15
// 3+5+7=15
// 8+7=15
// 5+10=15
26
rbarilani

C # -Version von @msalvadores Code Antwort

void Main()
{
    int[] numbers = {3,9,8,4,5,7,10};
    int target = 15;
    sum_up(new List<int>(numbers.ToList()),target);
}

static void sum_up_recursive(List<int> numbers, int target, List<int> part)
{
   int s = 0;
   foreach (int x in part)
   {
       s += x;
   }
   if (s == target)
   {
        Console.WriteLine("sum(" + string.Join(",", part.Select(n => n.ToString()).ToArray()) + ")=" + target);
   }
   if (s >= target)
   {
        return;
   }
   for (int i = 0;i < numbers.Count;i++)
   {
         var remaining = new List<int>();
         int n = numbers[i];
         for (int j = i + 1; j < numbers.Count;j++)
         {
             remaining.Add(numbers[j]);
         }
         var part_rec = new List<int>(part);
         part_rec.Add(n);
         sum_up_recursive(remaining,target,part_rec);
   }
}
static void sum_up(List<int> numbers, int target)
{
    sum_up_recursive(numbers,target,new List<int>());
}
11
Keith Beller

C++ - Version desselben Algorithmus

#include <iostream>
#include <list>
void subset_sum_recursive(std::list<int> numbers, int target, std::list<int> partial)
{
        int s = 0;
        for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
        {
            s += *cit;
        }
        if(s == target)
        {
                std::cout << "sum([";

                for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
                {
                    std::cout << *cit << ",";
                }
                std::cout << "])=" << target << std::endl;
        }
        if(s >= target)
            return;
        int n;
        for (std::list<int>::const_iterator ai = numbers.begin(); ai != numbers.end(); ai++)
        {
            n = *ai;
            std::list<int> remaining;
            for(std::list<int>::const_iterator aj = ai; aj != numbers.end(); aj++)
            {
                if(aj == ai)continue;
                remaining.Push_back(*aj);
            }
            std::list<int> partial_rec=partial;
            partial_rec.Push_back(n);
            subset_sum_recursive(remaining,target,partial_rec);

        }
}

void subset_sum(std::list<int> numbers,int target)
{
    subset_sum_recursive(numbers,target,std::list<int>());
}
int main()
{
    std::list<int> a;
    a.Push_back (3); a.Push_back (9); a.Push_back (8);
    a.Push_back (4);
    a.Push_back (5);
    a.Push_back (7);
    a.Push_back (10);
    int n = 15;
    //std::cin >> n;
    subset_sum(a, n);
    return 0;
}
9
user1436489

Eine andere python Lösung wäre, das Modul itertools.combinations Wie folgt zu verwenden:

#!/usr/local/bin/python

from itertools import combinations

def find_sum_in_list(numbers, target):
    results = []
    for x in range(len(numbers)):
        results.extend(
            [   
                combo for combo in combinations(numbers ,x)  
                    if sum(combo) == target
            ]   
        )   

    print results

if __== "__main__":
    find_sum_in_list([3,9,8,4,5,7,10], 15)

Ausgabe: [(8, 7), (5, 10), (3, 8, 4), (3, 5, 7)]

5
brainasium

Ich dachte, ich würde eine Antwort von dieser Frage verwenden, aber ich konnte nicht, also hier ist meine Antwort. Es wird eine modifizierte Version einer Antwort in Struktur und Interpretation von Computerprogrammen verwendet. Ich denke, dies ist eine bessere rekursive Lösung und sollte den Puristen mehr gefallen.

Meine Antwort ist in Scala (und entschuldigt, wenn meine Scala saugt, ich habe gerade angefangen, es zu lernen). Die findSumCombinations Verrücktheit ist, die ursprüngliche Liste für die Rekursion zu sortieren und eindeutig zu machen, um Dupes zu verhindern.

def findSumCombinations(target: Int, numbers: List[Int]): Int = {
  cc(target, numbers.distinct.sortWith(_ < _), List())
}

def cc(target: Int, numbers: List[Int], solution: List[Int]): Int = {
  if (target == 0) {println(solution); 1 }
  else if (target < 0 || numbers.length == 0) 0
  else 
    cc(target, numbers.tail, solution) 
    + cc(target - numbers.head, numbers, numbers.head :: solution)
}

Um es zu benutzen:

 > findSumCombinations(12345, List(1,5,22,15,0,..))
 * Prints a whole heap of lists that will sum to the target *
4
Tsagadai
Thank you.. ephemient

ich habe die obige Logik von python zu PHP konvertiert.

<?php
$data = array(array(2,3,5,10,15),array(4,6,23,15,12),array(23,34,12,1,5));
$maxsum = 25;

print_r(bestsum($data,$maxsum));  //function call

function bestsum($data,$maxsum)
{
$res = array_fill(0, $maxsum + 1, '0');
$res[0] = array();              //base case
foreach($data as $group)
{
 $new_res = $res;               //copy res

  foreach($group as $ele)
  {
    for($i=0;$i<($maxsum-$ele+1);$i++)
    {   
        if($res[$i] != 0)
        {
            $ele_index = $i+$ele;
            $new_res[$ele_index] = $res[$i];
            $new_res[$ele_index][] = $ele;
        }
    }
  }

  $res = $new_res;
}

 for($i=$maxsum;$i>0;$i--)
  {
    if($res[$i]!=0)
    {
        return $res[$i];
        break;
    }
  }
return array();
}
?>
4
bala

Dies ähnelt einem Münzwechselproblem

public class CoinCount 
{   
public static void main(String[] args)
{
    int[] coins={1,4,6,2,3,5};
    int count=0;

    for (int i=0;i<coins.length;i++)
    {
        count=count+Count(9,coins,i,0);
    }
    System.out.println(count);
}

public static int Count(int Sum,int[] coins,int index,int curSum)
{
    int count=0;

    if (index>=coins.length)
        return 0;

    int sumNow=curSum+coins[index];
    if (sumNow>Sum)
        return 0;
    if (sumNow==Sum)
        return 1;

    for (int i= index+1;i<coins.length;i++)
        count+=Count(Sum,coins,i,sumNow);

    return count;       
}
}
3
DJ'

Hier ist eine Java Version, die sich gut für kleine N und sehr große Zielsummen eignet, wenn die Komplexität O(t*N) (die dynamische Lösung) größer ist als der Exponentialalgorithmus. Meine Version Verwendet einen Meet in the Middle-Angriff und ein wenig Verschiebung, um die Komplexität von klassisch naiv O(n*2^n) zu O(2^(n/2)) zu reduzieren.

Wenn Sie dies für Mengen mit zwischen 32 und 64 Elementen verwenden möchten, sollten Sie die int, die die aktuelle Teilmenge in der Schrittfunktion darstellt, in eine long ändern, obwohl die Leistung offensichtlich drastisch abnimmt Die eingestellte Größe wird erhöht. Wenn Sie dies für eine Menge mit einer ungeraden Anzahl von Elementen verwenden möchten, sollten Sie der Menge eine 0 hinzufügen, um sie geradzahlig zu machen.

import Java.util.ArrayList;
import Java.util.List;

public class SubsetSumMiddleAttack {
    static final int target = 100000000;
    static final int[] set = new int[]{ ... };

    static List<Subset> evens = new ArrayList<>();
    static List<Subset> odds = new ArrayList<>();

    static int[][] split(int[] superSet) {
        int[][] ret = new int[2][superSet.length / 2]; 

        for (int i = 0; i < superSet.length; i++) ret[i % 2][i / 2] = superSet[i];

        return ret;
    }

    static void step(int[] superSet, List<Subset> accumulator, int subset, int sum, int counter) {
        accumulator.add(new Subset(subset, sum));
        if (counter != superSet.length) {
            step(superSet, accumulator, subset + (1 << counter), sum + superSet[counter], counter + 1);
            step(superSet, accumulator, subset, sum, counter + 1);
        }
    }

    static void printSubset(Subset e, Subset o) {
        String ret = "";
        for (int i = 0; i < 32; i++) {
            if (i % 2 == 0) {
                if ((1 & (e.subset >> (i / 2))) == 1) ret += " + " + set[i];
            }
            else {
                if ((1 & (o.subset >> (i / 2))) == 1) ret += " + " + set[i];
            }
        }
        if (ret.startsWith(" ")) ret = ret.substring(3) + " = " + (e.sum + o.sum);
        System.out.println(ret);
    }

    public static void main(String[] args) {
        int[][] superSets = split(set);

        step(superSets[0], evens, 0,0,0);
        step(superSets[1], odds, 0,0,0);

        for (Subset e : evens) {
            for (Subset o : odds) {
                if (e.sum + o.sum == target) printSubset(e, o);
            }
        }
    }
}

class Subset {
    int subset;
    int sum;

    Subset(int subset, int sum) {
        this.subset = subset;
        this.sum = sum;
    }
}
3
jimpudar

Hier ist eine Lösung in R

subset_sum = function(numbers,target,partial=0){
  if(any(is.na(partial))) return()
  s = sum(partial)
  if(s == target) print(sprintf("sum(%s)=%s",paste(partial[-1],collapse="+"),target))
  if(s > target) return()
  for( i in seq_along(numbers)){
    n = numbers[i]
    remaining = numbers[(i+1):length(numbers)]
    subset_sum(remaining,target,c(partial,n))
  }
}
2
Mark

Sehr effizienter Algorithmus mit Tabellen, die ich vor ein paar Jahren in C++ geschrieben habe.

Wenn Sie DRUCKEN 1 einstellen, werden alle Kombinationen gedruckt (es wird jedoch nicht die effiziente Methode verwendet).

Es ist so effizient, dass es mehr als 10 ^ 14 Kombinationen in weniger als 10 ms berechnet.

#include <stdio.h>
#include <stdlib.h>
//#include "CTime.h"

#define SUM 300
#define MAXNUMsSIZE 30

#define PRINT 0


long long CountAddToSum(int,int[],int,const int[],int);
void printr(const int[], int);
long long table1[SUM][MAXNUMsSIZE];

int main()
{
    int Nums[]={3,4,5,6,7,9,13,11,12,13,22,35,17,14,18,23,33,54};
    int sum=SUM;
    int size=sizeof(Nums)/sizeof(int);
    int i,j,a[]={0};
    long long N=0;
    //CTime timer1;

    for(i=0;i<SUM;++i) 
        for(j=0;j<MAXNUMsSIZE;++j) 
            table1[i][j]=-1;

    N = CountAddToSum(sum,Nums,size,a,0); //algorithm
    //timer1.Get_Passd();

    //printf("\nN=%lld time=%.1f ms\n", N,timer1.Get_Passd());
    printf("\nN=%lld \n", N);
    getchar();
    return 1;
}

long long CountAddToSum(int s, int arr[],int arrsize, const int r[],int rsize)
{
    static int totalmem=0, maxmem=0;
    int i,*rnew;
    long long result1=0,result2=0;

    if(s<0) return 0;
    if (table1[s][arrsize]>0 && PRINT==0) return table1[s][arrsize];
    if(s==0)
    {
        if(PRINT) printr(r, rsize);
        return 1;
    }
    if(arrsize==0) return 0;

    //else
    rnew=(int*)malloc((rsize+1)*sizeof(int));

    for(i=0;i<rsize;++i) rnew[i]=r[i]; 
    rnew[rsize]=arr[arrsize-1];

    result1 =  CountAddToSum(s,arr,arrsize-1,rnew,rsize);
    result2 =  CountAddToSum(s-arr[arrsize-1],arr,arrsize,rnew,rsize+1);
    table1[s][arrsize]=result1+result2;
    free(rnew);

    return result1+result2;

}

void printr(const int r[], int rsize)
{
    int lastr=r[0],count=0,i;
    for(i=0; i<rsize;++i) 
    {
        if(r[i]==lastr)
            count++;
        else
        {
            printf(" %d*%d ",count,lastr);
            lastr=r[i];
            count=1;
        }
    }
    if(r[i-1]==lastr) printf(" %d*%d ",count,lastr);

    printf("\n");

}
2
Mendi Barel

Java nicht-rekursive Version, die immer wieder Elemente hinzufügt und sie auf mögliche Werte verteilt. 0s werden ignoriert und funktionieren für feste Listen (was Ihnen gegeben wird, ist, womit Sie spielen können) oder für eine Liste wiederholbarer Nummern.

import Java.util.*;

public class TestCombinations {

    public static void main(String[] args) {
        ArrayList<Integer> numbers = new ArrayList<>(Arrays.asList(0, 1, 2, 2, 5, 10, 20));
        LinkedHashSet<Integer> targets = new LinkedHashSet<Integer>() {{
            add(4);
            add(10);
            add(25);
        }};

        System.out.println("## each element can appear as many times as needed");
        for (Integer target: targets) {
            Combinations combinations = new Combinations(numbers, target, true);
            combinations.calculateCombinations();
            for (String solution: combinations.getCombinations()) {
                System.out.println(solution);
            }
        }

        System.out.println("## each element can appear only once");
        for (Integer target: targets) {
            Combinations combinations = new Combinations(numbers, target, false);
            combinations.calculateCombinations();
            for (String solution: combinations.getCombinations()) {
                System.out.println(solution);
            }
        }
    }

    public static class Combinations {
        private boolean allowRepetitions;
        private int[] repetitions;
        private ArrayList<Integer> numbers;
        private Integer target;
        private Integer sum;
        private boolean hasNext;
        private Set<String> combinations;

        /**
         * Constructor.
         *
         * @param numbers Numbers that can be used to calculate the sum.
         * @param target  Target value for sum.
         */
        public Combinations(ArrayList<Integer> numbers, Integer target) {
            this(numbers, target, true);
        }

        /**
         * Constructor.
         *
         * @param numbers Numbers that can be used to calculate the sum.
         * @param target  Target value for sum.
         */
        public Combinations(ArrayList<Integer> numbers, Integer target, boolean allowRepetitions) {
            this.allowRepetitions = allowRepetitions;
            if (this.allowRepetitions) {
                Set<Integer> numbersSet = new HashSet<>(numbers);
                this.numbers = new ArrayList<>(numbersSet);
            } else {
                this.numbers = numbers;
            }
            this.numbers.removeAll(Arrays.asList(0));
            Collections.sort(this.numbers);

            this.target = target;
            this.repetitions = new int[this.numbers.size()];
            this.combinations = new LinkedHashSet<>();

            this.sum = 0;
            if (this.repetitions.length > 0)
                this.hasNext = true;
            else
                this.hasNext = false;
        }

        /**
         * Calculate and return the sum of the current combination.
         *
         * @return The sum.
         */
        private Integer calculateSum() {
            this.sum = 0;
            for (int i = 0; i < repetitions.length; ++i) {
                this.sum += repetitions[i] * numbers.get(i);
            }
            return this.sum;
        }

        /**
         * Redistribute picks when only one of each number is allowed in the sum.
         */
        private void redistribute() {
            for (int i = 1; i < this.repetitions.length; ++i) {
                if (this.repetitions[i - 1] > 1) {
                    this.repetitions[i - 1] = 0;
                    this.repetitions[i] += 1;
                }
            }
            if (this.repetitions[this.repetitions.length - 1] > 1)
                this.repetitions[this.repetitions.length - 1] = 0;
        }

        /**
         * Get the sum of the next combination. When 0 is returned, there's no other combinations to check.
         *
         * @return The sum.
         */
        private Integer next() {
            if (this.hasNext && this.repetitions.length > 0) {
                this.repetitions[0] += 1;
                if (!this.allowRepetitions)
                    this.redistribute();
                this.calculateSum();

                for (int i = 0; i < this.repetitions.length && this.sum != 0; ++i) {
                    if (this.sum > this.target) {
                        this.repetitions[i] = 0;
                        if (i + 1 < this.repetitions.length) {
                            this.repetitions[i + 1] += 1;
                            if (!this.allowRepetitions)
                                this.redistribute();
                        }
                        this.calculateSum();
                    }
                }

                if (this.sum.compareTo(0) == 0)
                    this.hasNext = false;
            }
            return this.sum;
        }

        /**
         * Calculate all combinations whose sum equals target.
         */
        public void calculateCombinations() {
            while (this.hasNext) {
                if (this.next().compareTo(target) == 0)
                    this.combinations.add(this.toString());
            }
        }

        /**
         * Return all combinations whose sum equals target.
         *
         * @return Combinations as a set of strings.
         */
        public Set<String> getCombinations() {
            return this.combinations;
        }

        @Override
        public String toString() {
            StringBuilder stringBuilder = new StringBuilder("" + sum + ": ");
            for (int i = 0; i < repetitions.length; ++i) {
                for (int j = 0; j < repetitions[i]; ++j) {
                    stringBuilder.append(numbers.get(i) + " ");
                }
            }
            return stringBuilder.toString();
        }
    }
}

Beispieleingabe:

numbers: 0, 1, 2, 2, 5, 10, 20
targets: 4, 10, 25

Beispielausgabe:

## each element can appear as many times as needed
4: 1 1 1 1 
4: 1 1 2 
4: 2 2 
10: 1 1 1 1 1 1 1 1 1 1 
10: 1 1 1 1 1 1 1 1 2 
10: 1 1 1 1 1 1 2 2 
10: 1 1 1 1 2 2 2 
10: 1 1 2 2 2 2 
10: 2 2 2 2 2 
10: 1 1 1 1 1 5 
10: 1 1 1 2 5 
10: 1 2 2 5 
10: 5 5 
10: 10 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 
25: 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 
25: 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 
25: 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 
25: 1 1 1 2 2 2 2 2 2 2 2 2 2 2 
25: 1 2 2 2 2 2 2 2 2 2 2 2 2 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 5 
25: 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 5 
25: 1 1 1 1 1 1 1 1 2 2 2 2 2 2 5 
25: 1 1 1 1 1 1 2 2 2 2 2 2 2 5 
25: 1 1 1 1 2 2 2 2 2 2 2 2 5 
25: 1 1 2 2 2 2 2 2 2 2 2 5 
25: 2 2 2 2 2 2 2 2 2 2 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5 5 
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 5 5 
25: 1 1 1 1 1 1 1 1 1 2 2 2 5 5 
25: 1 1 1 1 1 1 1 2 2 2 2 5 5 
25: 1 1 1 1 1 2 2 2 2 2 5 5 
25: 1 1 1 2 2 2 2 2 2 5 5 
25: 1 2 2 2 2 2 2 2 5 5 
25: 1 1 1 1 1 1 1 1 1 1 5 5 5 
25: 1 1 1 1 1 1 1 1 2 5 5 5 
25: 1 1 1 1 1 1 2 2 5 5 5 
25: 1 1 1 1 2 2 2 5 5 5 
25: 1 1 2 2 2 2 5 5 5 
25: 2 2 2 2 2 5 5 5 
25: 1 1 1 1 1 5 5 5 5 
25: 1 1 1 2 5 5 5 5 
25: 1 2 2 5 5 5 5 
25: 5 5 5 5 5 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 10 
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 10 
25: 1 1 1 1 1 1 1 1 1 2 2 2 10 
25: 1 1 1 1 1 1 1 2 2 2 2 10 
25: 1 1 1 1 1 2 2 2 2 2 10 
25: 1 1 1 2 2 2 2 2 2 10 
25: 1 2 2 2 2 2 2 2 10 
25: 1 1 1 1 1 1 1 1 1 1 5 10 
25: 1 1 1 1 1 1 1 1 2 5 10 
25: 1 1 1 1 1 1 2 2 5 10 
25: 1 1 1 1 2 2 2 5 10 
25: 1 1 2 2 2 2 5 10 
25: 2 2 2 2 2 5 10 
25: 1 1 1 1 1 5 5 10 
25: 1 1 1 2 5 5 10 
25: 1 2 2 5 5 10 
25: 5 5 5 10 
25: 1 1 1 1 1 10 10 
25: 1 1 1 2 10 10 
25: 1 2 2 10 10 
25: 5 10 10 
25: 1 1 1 1 1 20 
25: 1 1 1 2 20 
25: 1 2 2 20 
25: 5 20 
## each element can appear only once
4: 2 2 
10: 1 2 2 5 
10: 10 
25: 1 2 2 20 
25: 5 20
2
Bernat

Hier ist eine bessere Version mit besserer Ausgabeformatierung und C++ 11-Funktionen:

void subset_sum_rec(std::vector<int> & nums, const int & target, std::vector<int> & partialNums) 
{
    int currentSum = std::accumulate(partialNums.begin(), partialNums.end(), 0);
    if (currentSum > target)
        return;
    if (currentSum == target) 
    {
        std::cout << "sum([";
        for (auto it = partialNums.begin(); it != std::prev(partialNums.end()); ++it)
            cout << *it << ",";
        cout << *std::prev(partialNums.end());
        std::cout << "])=" << target << std::endl;
    }
    for (auto it = nums.begin(); it != nums.end(); ++it) 
    {
        std::vector<int> remaining;
        for (auto it2 = std::next(it); it2 != nums.end(); ++it2)
            remaining.Push_back(*it2);

        std::vector<int> partial = partialNums;
        partial.Push_back(*it);
        subset_sum_rec(remaining, target, partial);
    }
}

Um die Kombinationen mit Excel zu finden es ist ziemlich einfach). (Ihr Computer darf nicht zu langsam sein)

  1. --- (Gehe zu dieser Seite
  2. Gehen Sie zur Seite "Summe zum Ziel"
  3. Laden Sie die Excel-Datei "Summe zum Ziel" herunter.

    Folgen Sie den Anweisungen auf der Webseite.

hoffe das hilft.

1
Mark van Zoest

Ich habe etwas Ähnliches für eine scala Aufgabe gemacht. Ich dachte daran, meine Lösung hier zu posten:

 def countChange(money: Int, coins: List[Int]): Int = {
      def getCount(money: Int, remainingCoins: List[Int]): Int = {
        if(money == 0 ) 1
        else if(money < 0 || remainingCoins.isEmpty) 0
        else
          getCount(money, remainingCoins.tail) +
            getCount(money - remainingCoins.head, remainingCoins)
      }
      if(money == 0 || coins.isEmpty) 0
      else getCount(money, coins)
    }
1
Prabodh Mhalgi

Excel VBA-Version unten. Ich musste dies in VBA implementieren (nicht meine Präferenz, verurteile mich nicht!) Und habe die Antworten auf dieser Seite für den Ansatz verwendet. Ich lade hoch, falls andere auch eine VBA-Version benötigen.

Option Explicit

Public Sub SumTarget()
    Dim numbers(0 To 6)  As Long
    Dim target As Long

    target = 15
    numbers(0) = 3: numbers(1) = 9: numbers(2) = 8: numbers(3) = 4: numbers(4) = 5
    numbers(5) = 7: numbers(6) = 10

    Call SumUpTarget(numbers, target)
End Sub

Public Sub SumUpTarget(numbers() As Long, target As Long)
    Dim part() As Long
    Call SumUpRecursive(numbers, target, part)
End Sub

Private Sub SumUpRecursive(numbers() As Long, target As Long, part() As Long)

    Dim s As Long, i As Long, j As Long, num As Long
    Dim remaining() As Long, partRec() As Long
    s = SumArray(part)

    If s = target Then Debug.Print "SUM ( " & ArrayToString(part) & " ) = " & target
    If s >= target Then Exit Sub

    If (Not Not numbers) <> 0 Then
        For i = 0 To UBound(numbers)
            Erase remaining()
            num = numbers(i)
            For j = i + 1 To UBound(numbers)
                AddToArray remaining, numbers(j)
            Next j
            Erase partRec()
            CopyArray partRec, part
            AddToArray partRec, num
            SumUpRecursive remaining, target, partRec
        Next i
    End If

End Sub

Private Function ArrayToString(x() As Long) As String
    Dim n As Long, result As String
    result = "{" & x(n)
    For n = LBound(x) + 1 To UBound(x)
        result = result & "," & x(n)
    Next n
    result = result & "}"
    ArrayToString = result
End Function

Private Function SumArray(x() As Long) As Long
    Dim n As Long
    SumArray = 0
    If (Not Not x) <> 0 Then
        For n = LBound(x) To UBound(x)
            SumArray = SumArray + x(n)
        Next n
    End If
End Function

Private Sub AddToArray(arr() As Long, x As Long)
    If (Not Not arr) <> 0 Then
        ReDim Preserve arr(0 To UBound(arr) + 1)
    Else
        ReDim Preserve arr(0 To 0)
    End If
    arr(UBound(arr)) = x
End Sub

Private Sub CopyArray(destination() As Long, source() As Long)
    Dim n As Long
    If (Not Not source) <> 0 Then
        For n = 0 To UBound(source)
                AddToArray destination, source(n)
        Next n
    End If
End Sub

Die Ausgabe (in das Direktfenster geschrieben) sollte sein:

SUM ( {3,8,4} ) = 15
SUM ( {3,5,7} ) = 15
SUM ( {8,7} ) = 15
SUM ( {5,10} ) = 15 
1
CodingQuant

Empfohlen als Antwort:

Hier ist eine Lösung mit es2015 Generatoren :

function* subsetSum(numbers, target, partial = [], partialSum = 0) {

  if(partialSum === target) yield partial

  if(partialSum >= target) return

  for(let i = 0; i < numbers.length; i++){
    const remaining = numbers.slice(i + 1)
        , n = numbers[i]

    yield* subsetSum(remaining, target, [...partial, n], partialSum + n)
  }

}

Die Verwendung von Generatoren kann sehr nützlich sein, da Sie die Skriptausführung sofort anhalten können, wenn Sie eine gültige Teilmenge gefunden haben. Dies steht im Gegensatz zu Lösungen ohne Generatoren (dh ohne Status), die jede einzelne Teilmenge von numbers durchlaufen müssen.

1
feihcsim

Swift 3 Konvertierung von Java Lösung: (von @JeremyThompson)

protocol _IntType { }
extension Int: _IntType {}


extension Array where Element: _IntType {

    func subsets(to: Int) -> [[Element]]? {

        func sum_up_recursive(_ numbers: [Element], _ target: Int, _ partial: [Element], _ solution: inout [[Element]]) {

            var sum: Int = 0
            for x in partial {
                sum += x as! Int
            }

            if sum == target {
                solution.append(partial)
            }

            guard sum < target else {
                return
            }

            for i in stride(from: 0, to: numbers.count, by: 1) {

                var remaining = [Element]()

                for j in stride(from: i + 1, to: numbers.count, by: 1) {
                    remaining.append(numbers[j])
                }

                var partial_rec = [Element](partial)
                partial_rec.append(numbers[i])

                sum_up_recursive(remaining, target, partial_rec, &solution)
            }
        }

        var solutions = [[Element]]()
        sum_up_recursive(self, to, [Element](), &solutions)

        return solutions.count > 0 ? solutions : nil
    }

}

verwendungszweck:

let numbers = [3, 9, 8, 4, 5, 7, 10]

if let solution = numbers.subsets(to: 15) {
    print(solution) // output: [[3, 8, 4], [3, 5, 7], [8, 7], [5, 10]]
} else {
    print("not possible")
}
1
RolandasR

Hier können auch alle Antworten ausgedruckt werden

public void recur(int[] a, int n, int sum, int[] ans, int ind) {
    if (n < 0 && sum != 0)
        return;
    if (n < 0 && sum == 0) {
        print(ans, ind);
        return;
    }
    if (sum >= a[n]) {
        ans[ind] = a[n];
        recur(a, n - 1, sum - a[n], ans, ind + 1);
    }
    recur(a, n - 1, sum, ans, ind);
}

public void print(int[] a, int n) {
    for (int i = 0; i < n; i++)
        System.out.print(a[i] + " ");
    System.out.println();
}

Die zeitliche Komplexität ist exponentiell. Ordnung von 2 ^ n

1
Astha Gupta

Zuerst 0 ableiten. Null ist eine Identität für Addition, daher ist sie in diesem speziellen Fall nach den monoiden Gesetzen unbrauchbar. Leiten Sie auch negative Zahlen ab, wenn Sie auf eine positive Zahl aufsteigen möchten. Andernfalls müssten Sie auch subtrahieren.

Also ... der schnellste Algorithmus, den Sie für diesen bestimmten Job erhalten können, ist in JS wie folgt angegeben.

function items2T([n,...ns],t){
    var c = ~~(t/n);
    return ns.length ? Array(c+1).fill()
                                 .reduce((r,_,i) => r.concat(items2T(ns, t-n*i).map(s => Array(i).fill(n).concat(s))),[])
                     : t % n ? []
                             : [Array(c).fill(n)];
};

var data = [3, 9, 8, 4, 5, 7, 10],
    result;

console.time("combos");
result = items2T(data, 15);
console.timeEnd("combos");
console.log(JSON.stringify(result));

Dies ist ein sehr schneller Algorithmus, aber wenn Sie das Array data sortieren absteigend, wird es noch schneller. Die Verwendung von .sort() ist unerheblich, da der Algorithmus am Ende much weniger rekursive Aufrufe liefert.

0
Redu

Ich habe das C # -Beispiel nach Objective-c portiert und es in den Antworten nicht gesehen:

//Usage
NSMutableArray* numberList = [[NSMutableArray alloc] init];
NSMutableArray* partial = [[NSMutableArray alloc] init];
int target = 16;
for( int i = 1; i<target; i++ )
{ [numberList addObject:@(i)]; }
[self findSums:numberList target:target part:partial];


//*******************************************************************
// Finds combinations of numbers that add up to target recursively
//*******************************************************************
-(void)findSums:(NSMutableArray*)numbers target:(int)target part:(NSMutableArray*)partial
{
    int s = 0;
    for (NSNumber* x in partial)
    { s += [x intValue]; }

    if (s == target)
    { NSLog(@"Sum[%@]", partial); }

    if (s >= target)
    { return; }

    for (int i = 0;i < [numbers count];i++ )
    {
        int n = [numbers[i] intValue];
        NSMutableArray* remaining = [[NSMutableArray alloc] init];
        for (int j = i + 1; j < [numbers count];j++)
        { [remaining addObject:@([numbers[j] intValue])]; }

        NSMutableArray* partRec = [[NSMutableArray alloc] initWithArray:partial];
        [partRec addObject:@(n)];
        [self findSums:remaining target:target part:partRec];
    }
}
0
JMan Mousey

PHP-Version, inspiriert von Keith Bellers C # -Version.

die PHP -Version funktionierte bei mir nicht, weil ich keine Zahlen gruppieren musste. Ich wollte eine einfachere Implementierung mit einem Zielwert und einem Zahlenpool. Diese Funktion schneidet auch alle Duplikate Einträge.

/**
 * Calculates a subset sum: finds out which combinations of numbers
 * from the numbers array can be added together to come to the target
 * number.
 * 
 * Returns an indexed array with arrays of number combinations.
 * 
 * Example: 
 * 
 * <pre>
 * $matches = subset_sum(array(5,10,7,3,20), 25);
 * </pre>
 * 
 * Returns:
 * 
 * <pre>
 * Array
 * (
 *   [0] => Array
 *   (
 *       [0] => 3
 *       [1] => 5
 *       [2] => 7
 *       [3] => 10
 *   )
 *   [1] => Array
 *   (
 *       [0] => 5
 *       [1] => 20
 *   )
 * )
 * </pre>
 * 
 * @param number[] $numbers
 * @param number $target
 * @param array $part
 * @return array[number[]]
 */
function subset_sum($numbers, $target, $part=null)
{
    // we assume that an empty $part variable means this
    // is the top level call.
    $toplevel = false;
    if($part === null) {
        $toplevel = true;
        $part = array();
    }

    $s = 0;
    foreach($part as $x) 
    {
        $s = $s + $x;
    }

    // we have found a match!
    if($s == $target) 
    {
        sort($part); // ensure the numbers are always sorted
        return array(implode('|', $part));
    }

    // gone too far, break off
    if($s >= $target) 
    {
        return null;
    }

    $matches = array();
    $totalNumbers = count($numbers);

    for($i=0; $i < $totalNumbers; $i++) 
    {
        $remaining = array();
        $n = $numbers[$i];

        for($j = $i+1; $j < $totalNumbers; $j++) 
        {
            $remaining[] = $numbers[$j];
        }

        $part_rec = $part;
        $part_rec[] = $n;

        $result = subset_sum($remaining, $target, $part_rec);
        if($result) 
        {
            $matches = array_merge($matches, $result);
        }
    }

    if(!$toplevel) 
    {
        return $matches;
    }

    // this is the top level function call: we have to
    // prepare the final result value by stripping any
    // duplicate results.
    $matches = array_unique($matches);
    $result = array();
    foreach($matches as $entry) 
    {
        $result[] = explode('|', $entry);
    }

    return $result;
}
0
AeonOfTime

@ KeithBellers Antwort mit leicht geänderten Variablennamen und einigen Kommentaren.

    public static void Main(string[] args)
    {
        List<int> input = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
        int targetSum = 15;
        SumUp(input, targetSum);
    }

    public static void SumUp(List<int> input, int targetSum)
    {
        SumUpRecursive(input, targetSum, new List<int>());
    }

    private static void SumUpRecursive(List<int> remaining, int targetSum, List<int> listToSum)
    {
        // Sum up partial
        int sum = 0;
        foreach (int x in listToSum)
            sum += x;

        //Check sum matched
        if (sum == targetSum)
            Console.WriteLine("sum(" + string.Join(",", listToSum.ToArray()) + ")=" + targetSum);

        //Check sum passed
        if (sum >= targetSum)
            return;

        //Iterate each input character
        for (int i = 0; i < remaining.Count; i++)
        {
            //Build list of remaining items to iterate
            List<int> newRemaining = new List<int>();
            for (int j = i + 1; j < remaining.Count; j++)
                newRemaining.Add(remaining[j]);

            //Update partial list
            List<int> newListToSum = new List<int>(listToSum);
            int currentItem = remaining[i];
            newListToSum.Add(currentItem);
            SumUpRecursive(newRemaining, targetSum, newListToSum);
        }
    }'
0
strider